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Wind tunnel experiments were used to investigate the effects of geometry on the trans-
verse galloping behavior of nominally rectangular cylinders at Reynolds numbers from 1000
to 10,000. Static measurements of the lift and the drag forces were used to determine the
variation of the normal force coefficient with angle-of-attack, in accordance with the typical
quasi-steady description of galloping. Cylinders with unity chord-to-thickness ratio (side
ratio) were found to vary from unstable, to neutrally stable, to stable as the corner radius
was increased from sharp, to half-round, to fully-round. Cylinders with side ratios of 2
or 3 demonstrated either stability over the entire Reynolds number range, or a transition
from unstable to stable with increasing Reynolds number, depending on corner radius. The
results demonstrated that in general, increasing the corner radius had a stabilizing effect.

I. Introduction

Elastically mounted cylinders with non-circular cross section are susceptible to a flow induced instability
known as galloping due to the fact that the aerodynamic forces on the body change with its orientation to
the oncoming flow. When a cylinder is elastically mounted in the transverse direction, i.e. the y-direction as
defined in Figure 1, an oscillation velocity ẏ in this direction will cause a change in the cylinder’s effective
angle-of-attack, α. As such, oscillating lift and drag forces will occur. The normal force coefficient along the
y-direction is related to the lift and drag coefficients, viz.:

Cy =
Fy

1/2ρU2
∞dl

= − 1

cosα2
(CL cosα+ CD sinα), (1)

where CL = FL/(1/2ρU
2
reldl) and CD = FD/(1/2ρU

2
reldl) are the lift and the drag coefficients, respectively,

U∞ is the steady freestream velocity, Urel is the instantaneous oncoming velocity relative to the cylinder, ρ
is the fluid density, d is the cylinder width and l is the cylinder span. FL and FD are the lift and the drag
forces, respectively, and Fy is the normal force. If the oscillation in Fy is such that it increases with α, this
effectively produces negative fluid damping and the structure could become unstable; a phenomenon known
as transverse galloping. That is, if ∂Cy/∂α > 0, the cylinder meets the necessary aerodynamic condition for
galloping. Galloping is a phenomenon that can affect structures such as ice coated power lines, bridge decks
and stalled wings [1]. Another type of structure that may be susceptible to the galloping instability is the
suspension line used in parachutes [2], such as those used to attach the payload to the canopy in precision
airdrop systems [3]. The cross-section of these braided cables is not circular, but is more accurately described
as a rectangle with a side ratio c/d (where c is chord length) in the range 2 – 3 and rounded corners [2].
Understanding the aerodynamic behavior relating to the transverse galloping of such nominally rectangular
cylinders is therefore fundamental to the prediction and mitigation of this instability.

The analysis of galloping typically assumes that the forces acting on the body vary in a quasi-steady
manner; that is, the lift and the drag forces depend only on the instantaneous relative velocity, Urel. However,
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Figure 1: Rectangular cylinder cross-section geometry and forces acting on the body when moving in the
transverse direction at a velocity ẏ.

this assumption is only valid when the time scale of oscillation is much longer than the time scale associated
with vortex shedding in the wake of the body. The relevant time scale ratio is expressed non-dimensionally
as the reduced velocity Vr = U∞/(df), where f is the frequency of oscillation. Classically, it has been argued
that quasi-steady analysis is valid for Vr > 20 [1]. Bearman and Luo [4] showed that the validity of the
quasi-steady assumption is better correlated to both the reduced velocity and the amplitude of oscillation.
If the assumption of quasi-steady behavior can be considered valid, then the results from static wind tunnel
tests can be used to describe the variation of the aerodynamic forces with α.

The goal of the present study is to investigate the effects of geometry on the aerodynamic behavior of
nominally rectangular cylinders with side ratio c/d and corner radius ratio r/d as it pertains to the transverse
galloping instability. This is a fundamental investigation in the behavior of rectangular cylinders that are
relavent to the application of parachute suspension lines. This work is motivated by recent experimental
studies from Siefers et al. [2, 5] who showed that large amplitude oscillations were present on suspension lines
at frequencies much lower than those of vortex shedding in the wake, and the authors suspected transverse
galloping could be the cause. The Reynolds number range considered in this work is Red = U∞d/ν = 1000
– 10,000, where ν is the kinematic viscosity, which is relevant to the suspension lines of precision airdrop
systems. Over this relatively low Reynolds number range, there is limited information in the literature on
the flow characteristics of rectangular cylinders, even for sharp-cornered cylinders. To the best of the authors
knowledge, there have been no studies regarding the effect of corner radius on galloping for c/d > 1. In
this work, static wind tunnel testing on geometries with 1 ≤ c/d ≤ 3 and 0 ≤ r/d ≤ 0.5 was performed to
determine the variation in the lift and the drag forces, and surface-pressure distributions with angle-of-attack
on rigidly mounted models. The α variation in Cy was computed from CL and CD, and from this the ∂Cy/∂α
galloping criterion was assessed.

II. Experimental Setup

The experiments are conducted in a low-speed, low-turbulence open return wind tunnel located at the
Flow Physics and Control Lab at Michigan State University. Flow enters the test section after passing
through a series of screens, a honeycomb and a 10:1 contraction. The test section has a 355 mm × 355 mm
square cross-section and is 3 m long. The mean turbulence intensity at the center of the test section over
the range of freestream speeds used in this study is 0.1% for a frequency range above 0.5 Hz. The Reynolds
number varies from Red = 1100 to 10,000, which corresponds to freestream velocities of approximately 0.8
m/s to 7.5 m/s. The freestream velocity is monitored using a pitot-static tube connected to an MKS Baratron
223B differential pressure transducer with a full-scale range of 133 Pa and a 0.3% of-reading accuracy. At
the low Reynolds number end, the pressure transducer resolution becomes a greater source of uncertainty
than the accuracy, with a resolution of 0.013 Pa.

The experimental models under investigation are cylinders with nominally rectangular cross-section de-
fined by the chord length c, the diameter d = 20 mm, and the corner radius r, as shown in Figure 1. The
coordinate s is the in-plane surface tangential direction, originating at the forward intersection of the chord
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line and the model surface. The cross-sectional shapes of the nine models are shown in Figure 2. The case
of r/d = 0.5 corresponds to cylinders with fully round fore and aft faces, while r/d = 0 is the sharp-edged
case. The models are 320 mm in length and span the majority of the test-section height, giving an aspect
ratio of 16. The nominal solid blockage at an angle-of-attack α = 0◦ is 5%, and the worst case blockage
for c/d = 3 and α = 15◦ is 10%. Circular end plates with a diameter of 15d and a 30◦ chamfered edge are
fixed to the walls of the tunnel at each end of the model (Figure 3a). In order to allow free movement of the
model under aerodynamic loading for force measurements, a 30 mm long by 20 mm wide slot is necessary
in the end plates. Initial testing showed that outside air drawn into the test-section through this slot had
significant impact on the flow. As such, 4.5d diameter, 0.75 mm thick fences are attached to the ends of
the model to eliminate the unwanted axial flow. A gap of approximately 0.5 mm is maintained between the
fences and the fixed end plates, as shown in Figure 3a.

c

d

r

c/d

r/d

1

2

3

0 0.25 0.5

Figure 2: Cross-sectional geometry of the models under investigation.

The models are constructed using one of two methods. For geometries where only force measurements
are performed, the model is machined from a single piece of aluminum. When surface pressure measurements
are desired, the model is made in three spanwise segments; two outer aluminum segments, and a center 3D
printed segment housing the pressure taps. Pressure taps with a diameter of 0.35 mm are distributed around
the perimeter of the model with a typical spacing in the s-direction of 0.02P , where P is the model perimeter.
Where necessary, the spanwise location of successive taps is staggered to accommodate the connection of
plastic tubing inside the model. For the c/d = 1 models, only half the perimeter houses pressure taps due
to limited space for tubing inside the model. In this case, full pressure distributions are measured by first
measuring at α, and then α+ 180◦. A step-servo motor with a resolution of 0.02◦ is used to control α. The
tubing is connected to a 48 channel Scanivalve and the pressure is measured using an MKS Baratron 226A
transducer with 133 Pa range. This sensor has a 0.3% of-reading accuracy and a resolution of 0.013 Pa.

A custom one-component force balance is used to measure the lift and the drag forces on the model. Given
the Reynolds number range of interest, these forces are very low in magnitude. For example, at Red = 1000
a drag coefficient CD = 1 corresponds to a force of approximately 2.5 mN given the model dimensions. The
force balance, shown in Figure 3b, is comprised of a parallelogram four bar linkage from which the model
is suspended. Given the length of the bars from which the moving plate is suspended, the balance moves
primarily unidirectionally as the vertical displacement is O(102) – O(104) times smaller than the horizontal.
The angular motion at the pivot points is accomplished using Riverhawk 6016-600 rotational flexures that
have no surface-on-surface contact, thus avoiding static-friction issues. The loads that oppose the motion
of the balance and provide the necessary stiffness are the total suspended weight and the torque at the
pivot points. By measuring the displacement of the balance in the force direction using a Baumer OADM
12U6430 non-contact triangulation laser displacement sensor (3 – 5 µm resolution), the force can be obtained
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15d

4.5d

0.5 mm
gap

Tunnel wall

Fence End plate
Cylinder

(a) End conditions at the upper end of the model showing the
fixed end plate and the moving fence.

Flow

Displacement 
sensor

α motor

Viscous 
damper

End plates

Pivot point

(b) Cut-away view of the complete experimental setup in-
cluding the force balance, rotation assembly, model and end
plates.

Figure 3: Experimental setup schematics.

if the stiffness is known. An in-situ calibration is performed by applying known loads and measuring the
displacement. The balance is calibrated over a range of 2.5 mN – 500 mN and a typical stiffness is 110± 1
N/m. Extensive calibrations have shown that the response of the balance is linear over the entire calibrated
range. The full balance assembly is mounted to a platform that can be rotated to change between lift and
drag measurement; the configuration in Figure 3b shows the balance in the drag measurement position. A
viscous damper, composed of a mesh plate in an oil reservoir, is necessary to damp the oscillations of the
balance at its natural frequency of 1 Hz. For a c/d = 1, r/d = 0 cylinder with a non-dimensional vortex
shedding frequency of 0.13 [6], the expected shedding frequency is 4 Hz at Red = 1000. These oscillations
have negligible effect on the mean forces as they are also very low in amplitude due to the damping, with a
maximum amplitude of approximately 0.01d at the highest Reynolds number. The repeatability in the force
measurements varies from 0.1 mN – 1 mN over Red = 1100 – 10,000. Prior to use in the present experiments,
the force balance was validated using measurements of drag on a circular cylinder. This validation along
with other aspects of the force balance accuracy are the subject of a separate manuscript.

III. Results

A. Sharp-cornered square cylinder

Examples of the directly measured CL and CD variation with α are shown in Figure 4 for the c/d = 1,
r/d = 0 model. Five different Reynolds numbers are considered: Red = 1100, 2500, 5000, 7500 and 10,000.
The ranges of measurement uncertainties in CD and CL are 0.02 – 0.07 and 0.002 – 0.06, respectively. For
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Red > 1100, the variation in CD with α is approximately parabolic at low α, with a local maximum occurring
at α = 0◦. This behavior of a maxima in drag at α = 0◦ was not consistent over the entire geometry range;
although not shown for brevity, some of the models with larger c/d displayed the inverse trend of a local
minimum in drag at α = 0◦. At Red = 1100, there is a substantial decrease in CD and a flattening of the
curve for −5◦ ≤ α ≤ 5◦. Beyond this flat section, CD continues to decrease with α up to 15◦, which is
similar to the behavior at Red = 2500. For Red ≥ 5000, there is a drastic change in CD at α = 12◦ where
the slope of the curve sharply reverses and drag begins to increase. This change with Reynolds number is
also reflected in the lift coefficient, where CL monotonically decreases with α for Red < 5000, but a reversal
in the CL slope occurs at α = 12◦ for Red ≥ 5000. The drastic change in CD and CL at α = 12◦ is due
to flow reattachment on the bottom face, which is a well known effect for square cylinders with r/d = 0
(e.g. [7]), and the angle where reattachment occurs is often referred to as the critical angle. This value of
the critical angle and it’s insensitivity to Reynolds number agree very well with other studies who all found
reattachment to occur at α = 12◦ for 5000 ≤ Red ≤ 37, 000 [8, 9, 10]. The presence of a negative CL slope
at each Reynolds number indicates the possibility of galloping, since it can be shown that ∂Cy/∂α > 0 is
equivalent to ∂CL/∂α+ CD < 0 for small α [1].

-6 -4 -2 0 2 4 6 8 10 12 14 16

1

1.2

1.4

1.6

1.8

2

2.2

2.4

-6 -4 -2 0 2 4 6 8 10 12 14 16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4: Drag and lift coefficients for the c/d = 1, r/d = 0 cylinder as a function of angle-of-attack and
Reynolds number. Other than Red = 1100, the errorbars on CL are less than the marker size.

Prior to considering the results for the other geometries, the galloping behavior of the c/d = 1, r/d = 0
case will first be discussed since there exists data regarding this geometry from previous studies. Figure 5a
shows the variation in the normal force with α computed using CD and CL from Figure 4. As discussed in
Section I, the sign of ∂Cy/∂α indicates stability with respect to transverse galloping. In particular, a shape
is often deemed “unstable” with respect to galloping when ∂Cy/∂α > 0 at α = 0◦, since this corresponds
to a body galloping from rest. If ∂Cy/∂α < 0 at α = 0◦, but the slope in Cy is positive at some α range
away from 0◦, the body can still gallop as a hard oscillator. Hard galloping will be discussed in a subsequent
section. The results in Figure 5a demonstrate that for Red > 1100, ∂Cy/∂α > 0 at α = 0◦ and the body
is unstable. At Red = 1100, the change in Cy near α = 0◦ is negligible within the error bounds, thus the
body is neutrally stable at this Reynolds number. The severity of the galloping instability can be quantified
by examining the magnitude of ∂Cy/∂y, which is shown in Figure 5b for α = 0◦. The derivative was
computed from either a cubic spline fit of Cy, or a sliding cubic fit for Red < 5000 to smooth scatter in the
data. Over 1100 ≤ Red ≤ 10, 000, the derivative of Cy increases monotonically from a value that is zero
(within uncertainty) to 6.4 ± 1.2. This indicates that the cylinder becomes more susceptible to galloping
with increasing Reynolds number. Data from previous studies up to Red = 66, 000 is also included in this
figure for comparison with the present results. The only value of ∂Cy/∂α that overlaps the present Reynolds
number range is from Norberg [10] at Red = 5000, which agrees within uncertainty with the present value of
∂Cy/∂α at the same Red. The combination of the data from this study and that of other researchers shows a
maximum in ∂Cy/∂y ≈ 6 at Red ≈ 10, 000, with the value at higher Reynolds number potentially plateauing
at Red ≈ 30, 000 at a value of ∂Cy/∂y = 2 – 3. It is often assumed that the effect of Reynolds number on
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the galloping behavior of rectangular cylinders with r/d = 0 is negligible due to their fixed separation points
(e.g. [11]). However, the present results and those of other studies demonstrate that quite the opposite is
be true for c/d = 1.

-6 -4 -2 0 2 4 6 8 10 12 14 16

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Normal force coefficient variation with α and Red. Sym-
bols are the same as in Figure 4 and errorbars are less than
the marker size for Red > 1100.

10
3

10
4

10
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-2

0

2
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6

8

(b) Dependence of the normal force coefficient derivative at
α = 0◦ on Red. (◦) Present, (�) Norberg (1993) [10], (�)
Parkinson & Smith (1964) [12], (/) Luo et al. (1994) [9], (4)
Piccardo et al. (2011) [11], (?) Parkinson & Brooks (1961)
[13].

Figure 5: Galloping stability for c/d = 1, r/d = 0.

B. Normal force coefficients and galloping behavior

The Cy variation with α and Red for each of the geometries shown in Figure 2 is shown in Figures 6, 7 and
8 for c/d = 1, 2 and 3, respectively. The c/d = 1, r/d = 0.5 case is not shown since this geometry is stable
be definition. The results are grouped by c/d since the maximum value of Cy increases substantially with
increasing c/d for each r/d.

The results for c/d = 1, shown in Figure 6, will first be considered. The previously shown plot of Cy
for c/d = 1, r/d = 0 is reproduced in this figure for direct comparison with r/d = 0.25. After the region of
positive ∂Cy/∂α for r/d = 0 and Red > 2500, the slope becomes flat for α ≈ 4◦ to 7◦, prior to increasing
once again up to the critical angle of 12◦. Beyond this angle, the slope in Cy becomes negative and the body
is stable. Red = 2500 displays a similar trend, however there is no reattachment at this Reynolds number
and ∂Cy/∂α remains positive after α = 10◦. Comparing Cy for r/d = 0.25 to r/d = 0, a drastic change is
observed. At this increased value of r/d, the slope in Cy near α = 0◦ is zero for Red > 1100, indicating the
body is neutrally stable. A slight positive slope is observed for Red = 1100, although given the error bounds
on Cy, the slope may still be very near zero. For 2500 ≤ Red ≤ 7500, an α range away from zero is observed
where ∂Cy/∂α becomes positive, and this range both shrinks in size and becomes farther from α = 0◦ with
increasing Reynolds number. After this range of positive ∂Cy/∂α, Cy begins to decrease and the body is
stable. Once Red = 10, 000 is reached, Cy is essentially flat up to α = 11◦, after which ∂Cy/∂α < 0. These
results demonstrate that for c/d = 1, the corner radius has a profound effect on galloping behavior and the
resistance of a cylinder with unity side ratio to galloping can be improved by increasing r/d.

The variation in Cy with α for c/d = 2 is shown in Figure 7 for r/d = 0, 0.25 and 0.5. For r/d = 0,
the results are reminiscent of those for c/d = 1 at the same r/d, although at this larger side ratio ∂Cy/∂α
is positive at α = 0◦ for the entire Reynolds number range. The Cy curves also show a sharp change
from ∂Cy/∂α > 0 to ∂Cy/∂α < 0 at a lower angle-of-attack than for c/d = 1. This angle decreases from
approximately 8◦ to 6◦ with increasing Red, and it is possible that this represents similar flow reattachment
behavior as for c/d = 1. Unlike the variation in Cy for c/d = 1, there is no region of flat Cy and ∂Cy/∂α is
positive for all α prior to the sharp change in slope. As r/d is increased to 0.25 for c/d = 2, substantially
different trends are observed. A much stronger dependence on Reynolds number is observed for this geometry,
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Figure 6: Normal force coefficient variation with α and Red for c/d = 1. (◦) Red = 1100, (�) Red = 2500,
(�) Red = 5000, (5) Red = 7500, (.) Red = 10, 000.

as the slope in Cy at α = 0◦ is positive for Red = 1100, but becomes negative at Red = 2500 and increasingly
so with increasing Red. Interestingly, increasing r/d to 0.25 has a weaker effect on the slope of Cy at α = 0◦

at Red = 1100 compared with other Reynolds numbers. The minimum value of Cy for Red > 1100 increases
in magnitude with Red, along with a slight increase in the α value corresponding to the peak. After this local
minimum in Cy, each of these cases shows a range of α over which a strong positive gradient in Cy is observed,
followed by a smooth transition to a negative gradient at high angle-of-attack. Similar to r/d = 0, at high
angle-of-attack the effect of Reynolds number decreases and Cy begins to decrease at a comparable rate for
all Red. The behavior of Cy at r/d = 0.5 is qualitatively similar to that of r/d = 0.25. The most notable
difference at this maximum value of r/d is that the slope in Cy at α = 0◦ varies from flat at Red = 1100,
to slightly positive at Red = 2500, to negative for all higher Red. For Red ≥ 7500, the minimum value of
Cy is very close to that at r/d = 0.25, and it also occurs at α = 2◦. Once again, a consistent trend that is
observed is that Reynolds number effects weaken at high α, where in this case Cy data almost collapse for
all Red.

-6 -4 -2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4 6 8 10 12 14 16
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0.5

1

1.5

-6 -4 -2 0 2 4 6 8 10 12 14 16
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0

0.5

1

1.5

Figure 7: Normal force coefficient variation with α and Red for c/d = 2. Symbols are the same as in Figure
6.

The remaining plots of Cy for the largest side ratio under investigation, c/d = 3, are shown in Figure
8. The results for c/d = 3, r/d = 0 bear resemblance to those of c/d = 2, r/d > 0, where ∂Cy/∂α at
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α = 0◦ shows a strong dependance on Reynolds number. For this geometry, the slope of Cy near zero angle-
of-attack is positive and the body is unstable for Red ≤ 2500, but becomes negative and stable for larger
Reynolds number. A smooth transition from positive to negative Cy slope with increasing α is observed for
Red = 1100, whereas a sharp transition occurs for Red = 2500. Unlike c/d = 2 and r/d > 0, for Red > 2500
Cy is negative for all positive α, and only a small α range can be seen where Cy increases at at relatively
low rate. The effect of Reynolds number on Cy undergoes a change once the corner radius is increased above
r/d = 0, where for both r/d = 0.25 and 0.5 the slope of Cy near α = 0◦ becomes exclusively positive for all
Red. In addition to this, the peak values of Cy show a significant increase compared to r/d = 0, with values
of Cy reaching as large as nearly 3 in some cases. In fact, the general shape of Cy (which is approximately
equal to −CL for small α) for c/d = 3 and r/d ≥ 0.25 is much more reminiscent of that of a streamlined
body than that of the other bluff bodies in this study. That is; Cy decreases approximately linearly near
α = 0◦ and Cy < 0 for α > 0, with only a moderate increase in Cy following the peak minimum before
decreasing once again. An interesting double peak behavior is observed for r/d = 0.5 and Red ≥ 7500 that
is not seen for any other cases. This side ratio also demonstrates consistent behavior where the slope in Cy
becomes relatively insensitive to Reynolds number at high angle-of-attack.

-6 -4 -2 0 2 4 6 8 10 12 14 16
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Figure 8: Normal force coefficient variation with α and Red for c/d = 3. Symbols are the same as in Figure
6.

The effects of c/d and r/d on the galloping criterion, ∂Cy/∂α|α=0, over the Reynolds number range are
highlighted in Figures 9 and 10, respectively. Considering first the effects of c/d on galloping, Figure 9
shows that for r/d = 0, ∂Cy/∂α|α=0 shows a very similar trend of increasing with Reynolds number for both
c/d = 1 and 2. In fact, over much of the Red range, the values of ∂Cy/∂α|α=0 are within uncertainty of
each other for these two side ratios. Once c/d increases to 3, the galloping behavior changes substantially
as there is a transition from instability to stability between Red = 2500 and 5000. For Red < 5000 where
∂Cy/∂α|α=0 > 0, the derivative is an order of magnitude larger for c/d = 3, and this body is thus substantially
more unstable than c/d = 1 and 2. At r/d = 0.25, there is no longer similar behavior between c/d = 1 and
2, as c/d = 1 is neutrally stable for all Red, whereas c/d = 2 transitions from unstable to stable between
Red = 1100 and 2500. A similar transitionary behavior for c/d = 2 occurs for r/d = 0.5, although in this
case at a larger Reynolds number. Once c/d is increased to 3 for both r/d = 0.25 and 0.5, these geometries
become stable over the entire Reynolds number range. A similarity that can be observed for both r/d = 0.25
and 0.5 is that the ∂Cy/∂α|α=0 curves for c/d = 2 and 3 appear to converge as Red approaches 10,000.

The effects of r/d on the galloping criterion are shown in Figure 10. An overarching observation that can
be made for all side ratios is that increasing the corner radius has a stabilizing effect. That is, increasing r/d
from 0 to 0.5 can cause the cylinder to transition from unstable to stable at a given Reynolds number. For
example, c/d = 1 shows this trend at Red = 10, 000. However, for c/d = 1 and 2 this stabilizing behavior
has a diminishing effect with decreasing Reynolds number, where the value of ∂Cy/∂α|α=0 tends towards
0 for most r/d values. The opposite behavior occurs at c/d = 3 where the stabilizing effect of r/d is most
pronounced for Red < 5000, while the effect of r/d becomes negligible at the high Reynolds number end.
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Figure 9: Side ratio effect on the galloping criterion at α = 0◦ as a function of Reynolds number.
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Figure 10: Corner radius effect on the galloping criterion at α = 0◦ as a function of Reynolds number. The
inset plot for c/d = 1 has a reduced ordinate scale to highlight the r/d effects.

C. Surface pressure distributions

Further insight into the effects of cylinder geometry on the flow can be gained by considering surface pressure
distributions for select cases. Figures 11 and 12 show the variation in Cp = (p − p∞)/q∞ over the surface,
where p and p∞ are the surface and freestream static pressure, respectively. The pressure coefficient is
plotted against the wall-tangential coordinate s normalized by the perimeter, P . The cases selected for
examining Cp are c/d = 1, r/d = 0 and 0.25 (Figure 11), and c/d = 3, r/d = 0 (Figure 12).

Surface pressure distributions at several angles-of-attack and Red = 5000 for c/d = 1, r/d = 0 are shown
in Figure 11a. In this plot, the dashed vertical lines identify the locations of the corners. As per the definition
in Figure 1, s = 0 originates at the center of the front face and increasing s travels along the cylinder surface
in the clockwise direction. At α = 0◦, the Cp distribution shows that other than the front face, the flow
is separated over the remaining three faces, as indicated by an approximately constant Cp on each of these
faces. Once α increases to 4◦, the flow remains separated on these faces, however the pressure increases on
the upper face (0.13 ≤ s/P ≤ 0.38) but is relatively unchanged on the lower face (−0.38 ≤ s/P ≤ −0.13).
This change in the pressure level of the separated flow between the upper and lower faces as α increases
from 0◦ to 4◦ leads to an increase in Cy and thus instability with respect to galloping, as shown in Figure
5a. As α increases further to 8◦, the flow remains separated and the pressure level decreases by a similar
amount on both the upper and lower faces, leading to approximately no change in Cy. The local maximum
in Cy at α = 12◦ coincides with the flow on the bottom face reattaching near the corner at s/P = −0.38,
as was expected from previous discussion. Flow reattachment on the bottom face is indicated by the region
of substantial pressure recovery that follows the region of separated flow after the s/P = −0.13 corner.
The flow then separates again from the rear corner over the back face. Similar results are presented for
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comparison in Figure 11b for the c/d = 1, r/d = 0.25 cylinder. For this geometry, the curved faces at the
corners are indicated by shaded regions on the plot. The flow at α = 0◦ is attached over the front corners
(0.07 ≤ |s/P | ≤ 0.18) and separates immediately following this. Compared with r/d = 0, the value that
Cp plateaus to near the rear of the cylinder is substantially larger, which is consistent with lower drag for
r/d = 0.25. As α increases to 5◦, there is a uniform increase in the Cp level over the regions past the
top/bottom corners: −0.5 ≤ s/P ≤ −0.18 and 0.18 ≤ s/P ≤ 0.5. Unlike r/d = 0 where the small α increase
leads to relatively little change in Cp on the front face, there are substantial changes in Cp over the front
face and front corners for r/d = 0.25. However, the pressure decreases over the upper corner and similarly
increases over the lower corner, and the sum of all these changes is no change in Cy relative to α = 0◦

(Figure 6). A substantial change occurs at α = 10◦ where the pressure minimum decreases at s/P = −0.18
and the flow appears to remain attached over a greater extent of the cylinder’s lower half, separating near
the beginning of the lower back corner (s/P = −0.32). This coincides with the local maximum in Cy. At
α = 15◦ the behavior remains similar with separated flow after the first corner on the upper half of the
model, and attached flow on the bottom half up to the rear corner, which coincides with Cy decreasing and
the body becoming stable.
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(a) r/d = 0. Dashed vertical lines indicate the corners.
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(b) r/d = 0.25. Shaded areas indicate the curved corner faces.

Figure 11: Surface pressure distributions at various angles-of-attack for c/d = 1 and Red = 5000.

The effect of increasing c/d to 3 for r/d = 0 is shown in Figure 12. The flow over the c/d = 3 cylinder
differs from c/d = 1 in that after separation occurs at the front corners (|s/P | = 0.06), the flow reattaches at
some point near the back corner (|s/P | = 0.44) on the top and bottom faces for α = 0◦. As α is increased to
5◦, the flow becomes fully separated on the upper face but on the bottom face the region of separated flow
shrinks in length, as indicated by a shorter extent of Cp that is approximately constant. In addition to this,
the rate of pressure recovery increases and a local maximum appears in the Cp distribution on the bottom
face. Thus, unlike c/d = 1 where a small increase in α from α = 0◦ causes the flow to remain separated on
the top and bottom faces and an increase in Cy, a shrinking of the separated region for c/d = 3 is responsible
for the decrease in Cy (Figure 8) and stability with respect to galloping. At α = 8◦, Cy increases slightly
relative to α = 5◦ and similarly there appears to be very little change in the length of the separated region
on the bottom face, although the pressure recovery rate does increase. The separated region shrinks in size
as α increases to 15◦ and there is a substantial increase in the pressure level where Cp is constant, leading
to a large decrease in Cy. This overall behavior is also consistent at Red = 10, 000 where the shape of
Cy is similar. These results suggest the manner in which increasing c/d can lead to galloping stability for
r/d = 0 at certain Reynolds number is related to whether the flow is able to reattach on the bottom face at
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angles-of-attack near zero.
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Figure 12: Surface pressure distributions at various angles-of-attack for c/d = 3, r/d = 0 for Red = 5000.
Dashed vertical lines indicate the corners.

D. Hard galloping

As shown in Section B, there are certain geometries that are stable with respect to galloping at α = 0◦ (i.e.,
∂Cy/∂α|α=0 < 0) but still exhibit ranges of α where ∂Cy/∂α > 0, thereby making them susceptible to hard
galloping. This feature is observed for c/d = 2 and 3, with dependence on Red and r/d. The behavior of
∂Cy/∂α over 0 ≤ α ≤ 15◦ is shown in Figure 13 for four cases with two side ratios and two corner radii:
c/d = 2 and 3, and r/d = 0.25 and 0.5. The results demonstrate for each of these four geometries, there are
one to two ranges of α where ∂Cy/∂α > 0 and the body could exhibit hard galloping. At Red = 5000, the
c/d = 2, r/d = 0.25 geometry shows a transition to ∂Cy/∂α > 0 at approximately 1◦, and this angle will be
referred to as the galloping angle. When c/d is increased to 3 for the same corner radius, the galloping angle
increases to ∼ 4◦. Interestingly, the geometries with r/d = 0.5 show the same galloping angle as that for
r/d = 0.25 at the same c/d. The angle at which ∂Cy/∂α transitions back to negative also remains relatively
unchanged with r/d. The main difference observed is that for c/d = 3, r/d = 0.5 there are two closely spaced
regions of ∂Cy/∂α > 0. This hard galloping behavior is consistent at Red = 10, 000 for c/d = 2, although
for c/d = 3 the galloping angle is reduced for r/d = 0.5 compared with 0.25. These results demonstrate
that for Red and r/d cases where hard galloping is observed, the galloping angle is mainly governed by c/d.
This is in exception to c/d = 3 at Red = 10, 000. The galloping angle is related to the susceptibility to hard
galloping, since a larger galloping angle is equivalent to a larger initial disturbance that would be required
for an elastically mounted body to reach that value of α instantaneously. Since the galloping angle tends to
increase with side ratio, this leads to a decrease in the susceptibility to hard galloping.

IV. Conclusions

This experimental study investigates the effects of side ratio and corner radius on the galloping behavior
of rectangular cylinders at Reynolds numbers between 1000 and 10,000. Three different c/d values are
considered, 1, 2, and 3, along with three different corner radii: r/d = 0, 0.25 and 0.5. Lift and drag forces
are measured for varying angles-of-attack and Reynolds number, and from this the normal force coefficient
is computed. The variation in Cy (the force coefficient in the galloping direction) with angle-of-attack is
used to asses the galloping behavior of each geometry. In addition to this, surface pressure distributions are
presented for c/d = 1, r/d = 0 and 0.25, and c/d = 3, r/d = 0.

The effect of c/d on the galloping criterion, ∂Cy/∂α|α=0, varies for different r/d. At r/d = 0, c/d = 1
and 2 are unstable and had similar values of ∂Cy/∂α|α=0 over the entire Reynolds number range. This
behavior changes drastically when c/d is increased to 3, and the body shows a transition from unstable to
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Figure 13: Galloping criterion versus angles-of-attack for c/d = 2 and 3, r/d = 0.25 and 0.5 at Red = 5000
and 10,000. Solid lines indicate r/d = 0.25, dashed lines indicate r/d = 0.5.

stable behavior as the Reynolds number increases above 2500. A unique case is c/d = 1, r/d = 0.25 where
∂Cy/∂α|α=0 ≈ 0 for all Red and the body is therefore neutrally stable. For the same r/d, c/d = 2 shows
a transition from unstable to stable conditions with increasing Red, while c/d = 3 is stable over the entire
Red range. This behavior for c/d = 2 and 3 remains the same at the largest r/d of 0.5.

In general, increasing r/d above 0 is found to have a stabilizing effect on the body. This is most noticeable
at the high end of the Reynolds number range for c/d = 1 where the behavior transitions from unstable,
to neutrally stable, to stable for r/d = 0, 0.25 and 0.5, respectively. For c/d = 2 and similar Reynolds
numbers, the effect of r/d is more dramatic as the increase from r/d = 0 to 0.25 is sufficient for stability.
This stabilizing effect diminishes with decreasing Red for c/d = 1 and 2, where in each case ∂Cy/∂α|α=0

approaches zero for all r/d with decreasing Red (other than the circular cylinder). This trend reverses for
c/d = 3, where the low Reynolds number range shows the most sensitivity to r/d and at the high Reynolds
number end c/d = 3 is stable irregardless of r/d.

Surface pressure distributions are used to gain insight into the nature of the flow as it relates to galloping
stability. For c/d = 1, r/d = 0, which is unstable, the increase in Cy with increasing α near α = 0◦ is related
to the flow on the upper and lower faces of the cylinder remaining separated. Once the flow reattaches on
the bottom face, a maximum in Cy occurs and the slope with α becomes negative. This is similarly observed
for c/d = 1, r/d = 0.25 where the formation of a larger region of attached flow on the bottom half of the
cylinder coincides with a maximum in Cy. Unlike c/d = 1, the flow on the upper and lower surfaces for
c/d = 3, r/d = 0 separates but reattaches at α = 0◦. A small increase in α causes a shrinking of the length
of the separated domain, and thus a decrease Cy and a body that is stable with respect to galloping.

The final aspect of this study concerns the susceptibility of geometries that are stable to becoming
unstable as hard oscillators, known as hard galloping. This effect is observed for c/d = 2 and 3, in particular
for r/d = 0.25 and 0.5. The results demonstrate that side ratio has a dominating effect on hard galloping,
as the galloping angle for a particular c/d is generally unchanged with r/d. Increasing the side ratio from 2
to 3 increases the galloping angle, and thus makes the body less susceptible to hard galloping.
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