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The focus of this work is on assessing the ability of an array of discrete finite-core vortices to model vorticity-

dominated flows where vortex sheets that have not fully rolled up into isolated vortices are present. The study extends

our earlier work of modeling spatially periodic isolated vorticity in the wake of an oscillating airfoil. The present

extension of the model is carried out by taking advantage of existing measurements in the unsteady flow of a forced

two-stream shear layer. The shear-layer Reynolds number is 1.55 × 105, based on the velocity difference between the

two streams and the streamwise location of themeasurements. Single-component laserDoppler velocimetry is used to

capture the transverse profiles of the streamwise velocity in the shear layer. Overall, the results show that the model

provides good agreement with the experiments. The utility of the model is demonstrated by using it to establish

possible physical connections between the flow features and the characteristics of the cross-stream profiles of the

root-mean-square streamwise and transverse velocity. The model predictions are also found to exhibit small change

with significant reduction in the number of vortex elements, highlighting the efficiency of the model and its potential

usability in real-time flow control applications.

Nomenclature

c = airfoil chord
f = frequency, Hz
i, j = summation indices
k = reduced frequency
Lx = streamwise length of the vortex-array model
N = number of large-scale vortices in the vortex array

model
n = number of small-scale vortices in the vortex array

model
Ro;v = core radius of the large-scale vortices in the vortex-array

model
Ro;vs = core radius of the small-scalevortices in thevortex-array

model
r = ratio of low- to high-speed-stream streamwise velocity,

U2∕U1

ri;v = radial coordinate measured from the center of the ith
large-scale vortex in the vortex-array model

rj;vs = radial coordinate measured from the center of the jth
small-scale vortex in the vortex-array model

U = time-averaged streamwise velocity
Uo = average velocity of low- and high-speed streams
U1 = high-speed-stream velocity
U2 = low-speed-stream velocity
u = streamwise velocity
hui = phase-averaged streamwise velocity
urms = root mean square of the streamwise velocity
v = transverse velocity
vrms = root mean square of the transverse velocity
X = streamwise coordinate

Xci;v = streamwise coordinate of the core center of the ith
large-scale vortex in the vortex-array model

Xcj;vs = streamwise coordinate of the core center of the jth
small-scale vortex in the vortex-array model

Xm = streamwise coordinate of the measurements
Y = transverse coordinate
Yci;v = transverse coordinate of the core center of the ith large-

scale vortex in the vortex-array model
Ycj;vs = transverse coordinate of the core center of the jth small-

scale vortex in the vortex-array model
Ymax = transverse coordinate of the maximum transverse

gradient of the streamwise velocity
Yo = transverse coordinate of the location where U is

equal to Uo

α = angle of attack
ao = angle of attack amplitude of oscillation
ΔU = difference between low- and high-speed stream

velocities
Φ = oscillation cycle phase relative to the airfoil motion

(Φ � 0 corresponds to α � 0 during pitch-up)
Γo;v = circulation of the large-scale vortices in the vortex-array

model
Γo;vs = circulation of the small-scale vortices in the vortex-array

model
λ = wavelength (corresponding to the streamwise spacing

between successive large-sale vortices)
θ = momentum thickness of the shear layer
Ψ = oscillation cycle phase relative to the large-scale vortex

(Ψ � 0 corresponds to vortex located at Xm)

I. Introduction

M UCH of modern fluid dynamics research has been aimed at
understanding the flow structures dominating the transport

properties of flows. One significant motivation for this type of
research is to ultimately employ this understanding to construct
structure-based (i.e., physics-based) models that can help with
interpreting flow behavior in terms of the underlying organized
motions and, if possible, with predicting certain flow characteristics.
To date, however, there are very few examples of structure-based
models. These include those of Perry and Chong [1], Perry et al. [2],
and Ahn et al. [3] in turbulent wall-bounded flows, and Acton [4] and
Kitaplioglu and Kibens [5] in jet flows. More recently, Naguib et al.
[6] employed a simple, viscous-core-vortex-array model to compute
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the unsteady velocity field in the wake of a periodically pitching
airfoil embedded in a uniform flow. The model predictions agreed
well with experimental data of the streamwise velocity in thewake of
an oscillating NACA 0012 airfoil. The model was also successful in
estimating the mean thrust acting on the airfoil.
Modeling of thewake in [6] is focused on the “far”wake,where the

boundary layers separating from the trailing edge of the airfoil have
completely rolled up into concentrated vortices. Thus, a question
arises whether the idea of using an array of discrete finite-core
vortices could also be extended to model flow situations where
vortex sheets are present and the shed vorticity has not fully rolled up
into detached isolated vortices (such as near the trailing edge of
oscillating airfoils). Interest in extending themodel to these situations
stems from the fact that, because the model is based on the use of a
relatively small number of discrete vortices with known analytical
velocity field, the model is very simple to construct, efficient to run,
and can represent vortex-dominated flow fields with good accuracy
(as demonstrated in [6]). It is important to distinguish this type
of low-order modeling from the more resource-intensive Lagrangian
vortex particle methods (e.g., see the review by Leonard [7]),
which are high-fidelity direct-numerical-simulation-like approaches.
In particle methods, each vortex particle represents the vorticity
at a point, rather than an entire vortex, or an extended spatial
domain.
The present work takes advantage of an existing data set of a two-

stream shear layer, forced by a periodically pitching airfoil placed at
the center of the shear layer [8]. The main objective is to advance
physics-based modeling using viscous-core-vortex arrays, rather
than to understand the physics of the forced two-stream shear layer.
The shear layer mainly serves as a testbed for assessing the
modeling ideas; as such, applications of the model extend well
beyond the plane two-stream shear layer. These applications
include flapping-wing flight, bio propulsion, forced free and
impinging jets, and more generally flows where organized vorticity
forms from disturbed shear layers. It should also be added that the
most important benefit of physics-based, low-order models, like the
present one, is when they are used in conjunction with limited or
comprehensive computational and/or experimental data to interpret
observations of the velocity field in terms of the underlying flow
features and their characteristics.
Other benefits include complementing single-point measurements

and flow visualizations to extract flow structure information;
understanding qualitative, or possibly even quantitative, variation
in certain flow quantities with changes in the vortex characteristics;
and developing data assimilation models. Recent demonstrations
of some of these uses include [9], where a vortex array model
is used to examine the connection between the parameters

characterizing the wake vortex pattern of an oscillating airfoil and
the mean airfoil thrust, and [10,11], where the model is employed
to clarify hypotheses regarding the vortex behavior and the
dynamics in the wake of oscillating tandem hydrofoils. In the
current work, utility of the vortex-array model is exemplified by
using the model to clarify connections between the flow structure
of a two-stream shear layer and the characteristics of the
experimentally observed fluctuating-velocity rms profiles across
the shear layer.

II. Experiment

Details of the experimental data have been reported elsewhere [8].
Essential information is described here briefly for completeness. The
experiment is conducted in a low-speed water tunnel. A two-
dimensional shear-layer with a velocity ratio, r � U2∕U1 ≈ 0.44 is
produced downstream of a splitter plate in thewater tunnel. The flow
velocity of the high-speed stream U1 is 20.6 cm∕s, resulting in
Reynolds number based on ΔU � U1 −U2, of about 1150∕cm. A
NACA 0012 airfoil with chord c � 8 cm and extending across the
span of the water tunnel is pitched about the 1∕4-chord point in the
center of the shear layer, as depicted schematically in Fig. 1. The pitch
axis of the airfoil is placed 27 cm downstream of the trailing edge of
the splitter plate, and at a transverse location where the mean velocity
equals the average of the low- and the high-speed stream velocities:
Uo � �U1 �U2�∕2. The chord Reynolds number based on Uo is
approximately 12,000. The airfoil is pitched sinusoidaly with
amplitude αo of 4 deg around a mean angle of attack of zero at a
frequency f � 0.25 Hz. The corresponding reduced frequency is
k � πfc∕Uo � 0.42. The angle of attack α of the airfoil is recorded
simultaneously with the velocity using an RVDT to enable
calculation of phase-averaged quantities relative to the airfoil motion
(i.e., oscillating perturbations).
Measurement of the streamwise velocity is conducted using an

Laser Doppler Velocimeter in the dual scatter mode at streamwise
location X � 135 cm, where the Reynolds number based on X is
1.55 × 105, over a range −0.15 < �Y − Yo�∕X < 0.15 in the
transverse direction, where Yo is the Y coordinate of the position
where the mean velocity is Uo. This corresponds to
−6.7 < �Y − Yo�∕θ < 7.7, where θ is the momentum thickness:

θ �
Z

Ym

−∞

�
U1 −U�Y�
U1 −Um

��
U�Y� −Um

U1 −Um

�
dY (1)

In this expression, U�Y� is the time-averaged (mean) streamwise
velocity profile,Um the minimum velocity in the profile, and Ym the
Y location whereU � Um. The momentum thickness will be used to

Fig. 1 Sketch of the experimental configuration and employed coordinate system (not to scale).
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nondimensionalize all length scales in the remainder of the paper. For
reference, the shear layer thickness is approximately 8θ (see Fig. 2,
left), and the wavelength λ of the forced shear layer disturbance
is U0∕fθ � λ∕θ � 17.8.

III. Experimental Results

The flow visualization images in Fig. 3, taken fromKoochesfahani
and Dimotakis [8], show the change of the flow structures and the
growth rate of the shear layer downstream of the airfoil when it is
pitching periodically. As would be expected, organized vortex
structures roll up in the wake of the oscillating airfoil as a result of
forcing the shear layer. Figure 2 depicts the corresponding cross-
stream profiles of the mean and the root means square (rms)
streamwise velocity urms, where

U�Y� � 1

T

Z
T

0

u�Y; t� dt (2)

urms�Y� �
�������������������������������������������������������
1

T

Z
T

0

�
u�Y; t� −U�Y�

�
2
dt

s
(3)

The mean velocity profiles for the natural and forced shear layers
are very similar. However, the rms profiles are strikingly different in
magnitude and shape. The latter change from a single-peaked profile,
for the natural shear layer, to a triple-peaked distribution, in the
presence of forcing.
Phase-averaged streamwise velocity (hui) profiles for the forced

shear layer are shown in Fig. 4. To obtain these profiles, the
oscillation cycle is subdivided into 50 equal, nonoverlapping
intervals spanning from the beginning of the oscillation cycle
(corresponding to airfoil angle of attack of 0 deg during the pitch-up
phase), designated as Φ � 0, to the end of the cycle, designated as
Φ � 1. The streamwise-velocity data are sorted into these intervals,
or phase bins, based on the simultaneously recorded angle of attack
information, and data falling into the same phase bin are averaged to
get the phase-averaged velocity. Figure 4 displays the profiles at eight
different phases of the oscillation cycle:Φ � 0 to 0.875 in increments
of 0.125. The red lines superposed on the profile correspond to
boundaries of the “high-shear” region where the velocity gradient

dhui∕dY is within 50% of the maximum gradient magnitude at the
same oscillation phase.
The velocity profiles in Fig. 4 show that the high-shear region is

concentrated in a relatively narrow zone over a good portion of the
oscillation cycle. This zone shifts progressively in the positive cross-
stream direction with increasing time (as shown by the arrow on top
of the figure) from below, at Φ � 0.75, to above the shear-layer
centerline. In the remainder of the oscillation cycle, the high-shear
region widens to eventually encompass most of the measurement
domain.An explanation of this behavior can be reached by inspection
of the underlying flow structure, seen in the flow visualization picture
in Fig. 4. The picture clearly depicts two vortical structures, forming
from the roll-up of the shear layer in response to the airfoil oscillation.
The two vortical structures, which are expected to produce a shear
region spanning a domain of the same size as the vortex, are
connected with a “braid” that is much smaller in cross-stream scale
and is inclined at an angle relative to the streamwise direction. As the
braid convects past the fixed X location of the measurements, one
would expect it to produce a narrow zone of high shear that
progressivelymoves in the upward directionwith increasing time due
to the inclination of the braid. As the upstream end of the braid travels
past the measurement location, the measured shear zone is
anticipated to gradually increase in cross-stream scale, eventually
spanning the full shear-layer width, as the braid is followed by a
large-scale vortex. These observations are consistent with the
characteristics of the phase-averaged velocity profiles dis-
cussed above.

IV. Vortex-Array Model

Avortex-array model based on ideas similar to those employed in
Naguib et al. [6] is used to represent the forced shear layer. Themodel
is constructed by prescribing a streamwise-periodic spatial
distribution of vorticity that is consistent with the flow features
discussed in the previous section. Thus, one wavelength λ of the
prescribed vorticity field is composed of one large-scale vortex (LV)
and a number of smaller vortices representing the braid, or “vortex
sheet” (VS), which “connects” the LVs, as illustrated in Fig. 5. All
vortices are assumed to have a core with Gaussian vorticity
distribution with the circulation of the vortices representing the VS
given byΓo;vs, and that of the LVis Γo;v. The corresponding core radii
are Ro;vs and Ro;v, respectively, with the latter expected to be larger
than the former. It should be noted that the use of the flow features

Fig. 3 Dye flow visualization fromKoochesfahani andDimotakis [8] showing the shear-layer vortical structures downstreamof the airfoil for the natural
(left) and forced (right) shear layer.

Fig. 2 Mean (left) and rms (right) streamwise-velocity profiles at X � 135 cm.
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inferred from the flow visualization as the basis for modeling the

vorticity distribution may be misleading [12], because the evolution

of the dye features is dependent on the scalar diffusivity, whereas the

development of the vorticity field is tied to the kinematic viscosity.

These two quantities are only identical for a flow situation with a

unity Schmidt number. For dye, the Schmidt number is of order 1000.

However, even for such a large discrepancy in the scalar and viscous

diffusivity, the dye captures the vortical features well, provided that

the dye is injected at the location of vorticity generation and that the

visualization location is close to the place of introduction of the dye

[13]. Ultimately, the appropriateness of the vortex array model is

gaged by the success of themodel’s reproduction of the experimental

velocity data. From amore general perspective, themodel enables the

attainment of quantitative information of the velocity field based on

qualitative interpretations from flow visualization of vorticity

dominated flows. Comparison of these calculations with limited

experimental information facilitates verification of the flow

visualization interpretations. As such, together, flow visualization

and the finite-core-vortex array model could provide an efficient and

robust tool for identification of vortical flow features in a wide range

of flows.
The final vorticity distribution of the model is obtained by

repeating the vortex-array configuration shown in Fig. 5 N times in

the streamwise direction with a wavelength λ � Uo∕f to mimic the

periodic shear-layer vortex structure. Unlike the actual flow,

however, where the circulation and scale of the LVs and the braid

characteristics change in the streamwise direction, the characteristics

of the vortex array shown in Fig. 5 are selected to match the vorticity

characteristics at the measurement location, but then kept unchanged

when periodically extending the array. This is done for simplicity and

with the expectation that variation in the vorticity distribution within

wavelengths other than the one containing the calculation location

will cause minimal difference in the computed velocity. Specifically,

the induced velocity is calculated from the prescribed vorticity

distribution using the Biot-Savart law. Based on the latter, it can be

shown that the difference between the actual and frozen vorticity

distribution within wavelengths other than that containing the

calculation location relate to the dipole and higher-order poles of the

vortex pattern in these distant wavelengths. The corresponding

induced velocity decays at least quadratically with distance, and

hence these differences should have minimal, if any, influence on the

computed velocity. The negligible influence of higher-order

moments on the induced velocity is also discussed in reference [14]

for the specific case of a two-stream shear layer.
Using the Biot-Savart law, it can be shown that the streamwise (u)

and the transverse (v) components of the velocity induced at a point

(X; Y) by the vortex array, including N large vortices (which is also

equal to the number of wavelengths λ included in the model) and

n × N small vortices, superposed onto a uniform flow with

streamwise velocity Uo are given by

Fig. 4 Streamwise-velocity profiles obtained from an average at selected phases of the oscillation cycle for the forced shear layer (top), and flow
visualization image depicting the corresponding flow structure (bottom). The phase closest to the visualization instance is Φ � 0.25.

Fig. 5 Illustration of the arrangement of the Gaussian-core vortices used to model the braid (red) and large-scale vortex (yellow) over one wavelength λ.
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u�X; Y� � U0 −
XN
i�1

Γi;v�ri;v�
2π

�Y − Yci;v�
r2i;v

−
XnN
j�1

Γj;vs�rj;vs�
2π

�Y − Ycj;vs�
r2j;vs

(4)

v�X; Y� �
XN
i�1

Γi;v�ri;v�
2π

�X − Xci;v�
r2i;v

�
XnN
j�1

Γj;vs�rj;vs�
2π

�X − Xcj;vs�
r2j;vs

(5)
with

Γi;v�ri;v� � Γo;v�1 − e−�ri;v∕Ro;v�2 � (6)

Γj;vs�rj;vs� � Γo;vs�1 − e−�rj;vs∕Ro;vs�2 � (7)

where (Xci;v, Yci;v) is the coordinate of the center of the ith LV, (Xcj;vs,

Ycj;vs) is the coordinate of the center of the jth small vortex along the

VS, and ri;v and rj;vs are the radial coordinates measured from the

center of the ith LVand the jth small vortex, respectively, to point (X,
Y). Equations (4–7) yield the velocity field at a given instant in time.

For a given X location, the time-dependent velocity field is obtained

by advecting the streamwise coordinates Xci;v and Xcj;vs in the

streamwise direction at a velocity given by λf. This way of evolving
the flow field, which is based on Taylor’s frozen field hypothesis, is a

gross simplification, yet it appears to represent the flow reasonably

well, as will be seen below. More generally, the velocity field may be

evolved in time taking into account the mutual interaction of the

vortical features via the Bio-Savart law. Based on the results given

below, this is not expected to provide significant quantitative

difference from the results shown here for a given X location.

However, accounting for the mutual interaction of vortical features

should provide an overall more realistic streamwise evolution of the

flow aswell as better quantitative results over an extended streamwise

domain.
To determine the model parameters for a given case, a three-step

approach is used:
1. Preliminary estimation of the LV parameters Γo;v and Ro;v by

minimizing the difference between the calculations of the model
without the VS (i.e., n � 0) and the measured velocity profile at the
cycle phase when the LV is present at the measurement location.
2. Computation of a residual phase-resolved velocity profile by

subtracting the velocity computed using the LV-onlymodel from step
1 from the overall experimental phase-resolved velocity profile. The
residual profile, which predominantly captures the velocity due to
the VS alone, facilitates determination of the VS locus along which
the small-vortex centers (Xcj;vs, Ycj;vs) are deployed.
3. Optimization of the complete set of parameters of the full model,

including further refinement of the parameters determined in step 1.
Details of each of the above three steps may be found in

Appendix A.
The number of small vortices n in eachwavelength and the number

of large vortices N (or the streamwise length of the model Lx � Nλ)
in the model are set based on the convergence of the velocity
calculation, that is, when the calculation does not change with the

addition of more vortices to the model. Figure 6 depicts the model
computation of themean streamwise velocity �U −U0�∕ΔU, the rms
streamwise velocity urms∕ΔU, and the rms transverse velocity

vrms∕ΔU for different n values while keeping Lx∕λ � N � 100
(except for the solid black line where N � 10). Figure 7 shows the

same quantities but for different number of wavelengths while
keeping n � 200 (except for the solid black line where n � 20):
Lx∕λ � N � 10, 20, 50, and 100 (the values for other model

parameters are given in Table 1). As seen in Figs. 6 and 7, it is difficult
to discern the difference between the computed profiles without the

high-magnification inset provided in the plot when n ≥ 100 and
Lx∕λ � N ≥ 50. The model requires a relatively large number of
vortices to converge (more than approximately 5000), but it only

requires a few minutes to run when implemented in MATLAB

a) b) c)
Fig. 6 Dependence of the computed velocity profiles on nwithLx∕λ � N � 100 (except for the solid black line for whichN � 10): a) mean streamwise

velocity; b) rms streamwise velocity; c) rms transverse velocity. Inset in (b) provides a magnified view of the middle peak in the plot.

a) b) c)
Fig. 7 Dependence of the computed velocity profiles onN with n � 200 (except for the solid black line for which n � 20): a) mean streamwise velocity;
b) rms streamwise velocity; c) rms transverse velocity. Inset in (b) provides a magnified view of the middle peak in the plot.
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on a PC. For all subsequent calculations reported here, n � 200 and
Lx∕λ � N � 50. The vorticity field obtained from the resulting
vortex-array model is shown in Fig. 8. It is noteworthy, however, that
using the model with a much smaller number of vortices (200, with
n � 20 and N � 10), the resulting mean and rms velocity profiles
are not significantly different from those of the converged model
(compare the solid and the broken black lines in Figs. 6 and 7). This
implies that at the expense of a relatively small difference, the model
could be much more efficient to run, making it potentially useful for
real-time flow control applications.

V. Results

In this section, the model calculations, using the optimized
parameters (given in Table 1), are compared with the experimental
data. In Table 1, dYc is a parameter representing the cross-stream
offset of the LV core center. Also, it is interesting to consider the total
circulation of the shear layer per unit wavelength; that is,
Γ∕λ � Γo;v∕λ� nΓo;vs∕λ. Based on the circulation values in Table 1,
and λ∕θ � 17.8, Γ∕λ � 0.95ΔU, which is consistent with Γ∕λ ∼ 1
for shear layers (e.g., see [14]). Figure 9 displays a comparison
between the computed and the measured streamwise velocity
profiles at 10 different phases of the oscillation cycle (Ψ � 0 to 1 in

steps of 0.1). Note that Ψ is shifted by 0.55 relative to Φ (the

oscillation cycle phase used hitherto) such that Ψ � 0 corresponds

to the center of the core of the large-scale vortex coinciding with the

calculation location (see Fig. 8 for connecting Ψ values to the

streamwise location along the shear layer).
Overall, Fig. 9 shows that the model results agree remarkably well

with the experimental data at most phases in the oscillation cycle,

specially between Ψ � 0.2 and 0.7, when the central part of the VS

passes through Xm. This indicates that this part of the VS is modeled

properly. However, some subtle differences can be seen, particularly

at phases betweenΨ � 0 and 0.1 andΨ � 0.8 and 0.9when the LVis

close to Xm. For example, the computed velocity overestimates the

measured values for −1 < �Y − Yo�∕θ < 6 at Ψ � 0.1, and the

computed velocity is lower than the measured values below Yo at

Ψ � 0.9. It is suspected that further refinement of the detailed

structure of the VS may remedy these subtle differences. Such

refinements may include a nonlinear description of the VS shape,

particularly where it connects with the LV, and allowing the small-

vortex properties (Γo;vs and Ro;vs) to vary along the vortex sheet.

These modifications, however, would add complexity that is likely

unnecessary given that the difference between the model compu-

tations and the measurements is rather small.
Additional comparison between the computed and measured

velocity is given in Fig. 10 for themean and rms velocity profiles. No

experimental data are shown for vrms (Fig. 10c), because only the

streamwise component of the velocitywasmeasured. The vrms results

are shown for reference and to highlight an advantage of the model in

augmenting limited experimental data with additional information.

Also, the symbols in Figs. 10a and 10b represent mean and rms

Fig. 8 Contour plot of the nondimensional vorticity field ωzθ∕ΔU obtained from the vortex-array model. The broken white lines identify the locations
corresponding to the phases at which streamwise velocity profiles are plotted in Fig. 9. Model parameters are listed in Table 1. X � 0 is set arbitrarily.

Table 1 Values of the parameters of the vortex-array model

Γo;v∕ΔUθ Ro;v∕θ Γo;vs∕ΔUθ Ro;vs∕θ dYc∕θ n Lx∕λ � N

8.03 2.09 0.044 0.79 0.135 200 50

Fig. 9 Comparison of the computed (line) andmeasured (symbols) streamwise velocity profiles at selected phases of the oscillation cycle. The locations of
the shear layer corresponding to the phases shown are identified with white broken lines in Fig. 8.
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streamwise velocity profiles calculated from the phase-averaged
experimental data of 20 selected phases of the oscillation cycle

(Ψ � 0 to 0.95 in steps of 0.05), rather than from the long time series.
Thus, the rms profiles differ from those presented in Fig. 2 in that any

random velocity fluctuations that are not phase-locked to the airfoil
motion (e.g., due to cycle-to-cycle variation in the cross-stream

location of the LV core center) are not captured in the data shown in
Fig. 10. As seen from Fig. 10, the model gives good reproduction of
the mean streamwise velocity. Additionally, the computed rms

streamwise velocity is in excellent qualitative agreement with the
experimental data, depicting a triple-peaked urms profile shape;

though the overall magnitude is under estimated for �Y − Y0�∕θ < 1.
The main advantage of the vortex-array model is when used as a

tool for understanding of the flow physics. To demonstrate, we

examine how the observed features of the rms profiles relate to the
characteristics of the flow structures. To this end, the contribution of
the VS or the LV to the computed velocity is “turned off” in order to

understand the induced velocity characteristics of each one of these
two features by itself. Figure 11 depicts contour plots of the computed

phase-resolved velocity of the LV alone (Fig. 11a), the VS by itself
(Fig. 11b), and the two combined (i.e., obtained from the full model;

Fig. 11c). In each case, the mean velocity U�Y� is subtracted to
emphasize the unsteady flow features. As would be expected, when

considering the large-scale vortex only, the largest induced velocity
magnitude occurs at the phase when the vortex is at the calculation

location (ψ � 0; or 1) and at Y locations of approximately �Ro;v

away from thevortex center. In contrast, at theY location of the vortex

center, near �Y − Yo�∕θ � 0, there is no variation in velocity with
phase (as implied from the horizontal orientation of the velocity
contours). Thus, on its own, the LV is expected to produce the

strongest streamwise velocity variation at Y locations that are
approximately�Ro;v away from vortex core center, and no variation

at the location of the center: a known feature of Gaussian vortices.
On the other hand, when considering the VS alone (Fig. 11b), the

corresponding contour plot clearly captures the sheet, depicted as a

narrow zone of densely packed contour lines that stretch over the full
cycle. Consistent with the modeled locus of the vortex sheet (Fig. 15,
right), this zone has two “horizontal” parts (“head” and “tail”) that

approximately span the first and last 30% of the cycle. These are the

VS parts that reside on top and bottom of, and are getting entrained
into the LV. The remainder of the VS is made up of an inclined shear
layer. Referring to Fig. 11b, it is evident that the inclined part of the

VS is associated with the largest velocity change with phase and that
this change is fairly uniform with Y. This velocity variation is

associatedwith the change inu produced by the shear across the sheet
as the sheet advects past the observation location. The head and tail
of the vortex sheet do not produce similar variation because the

associated shear is orthogonal to the advection direction. However,
these parts produce localized velocity fluctuation peaks that are
collocated in phasewith the head and tail but reside atY locations that

are above and below the head and tail, respectively. These velocity
variations are related to the finite length of the “horizontal” head and
tail. In other words, a streamwise advecting horizontal vortex sheet

that is infinitely long would produce no fluctuating velocity because,
as stated earlier, the advection does not result in movement of the

shear past the velocity observation point. However, with a short-
length VS, at any instant, the induced streamwise velocity of this
layer varies with X, which would produce temporal variation in u
when observing the velocity at a fixed point in space past that the VS
advects.
The superposition of the phase-resolved velocity fluctuation in

Figs. 11a and 11b produces the full-fluctuating-velocity contours in
Fig. 11c. Although the resulting contour pattern is complex, the largest

fluctuations seem to be centered around three Y locations: in the
vicinity of the shear layer center, and outboard at �Y − Yo�∕θ ≈ −3.5
and 3 (as marked using horizontal broken lines in Fig. 11). Near the

shear-layer centerline, the superposition of the velocity signatures of
the LV and the VS produces a contour pattern that is similar to that

produced by the inclined part of the VS alone (Fig. 11b) while being
more localized (rather than spread/uniform). On the other hand, at the
outboard locations, the phase difference between the fluctuating

velocities of the LVand theVS (as seen fromFigs. 11a and 11b) is such
that a net constructive superposition takes place at �Y − Yo�∕θ ≈ −3.5
and 3, producing large velocity fluctuation. Notably, the fluctuation

velocity is not as large at �Y − Yo�∕θ ≈�Ro;v∕θ ≈�2 aswas the case
in Fig. 11a for the LV alone. This is because, at these locations, the
superposition of the vortex and the braid influences does not produce

fluctuation as strong as found at �Y − Yo�∕θ ≈ −3.5 and 3. In other

a) b) c)
Fig. 10 Comparisonof the computed (line) andmeasured (symbols) velocity profiles: a)mean streamwise velocity; b) rms streamwise velocity; and c) rms
transverse velocity.

a) b) c)
Fig. 11 Computed mean-removed phase-resolved velocity �hui − U�Y��∕ΔU due to the LV (a), the VS (b), and their combination (c). The horizontal
broken lines are used to identify the Y locations of the outboard urms peaks from Fig. 10b.

ZHANG, NAGUIB, AND KOOCHESFAHANI 917

D
ow

nl
oa

de
d 

by
 M

IC
H

IG
A

N
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

M
ay

 8
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

74
22

 



words, the presence of the vortex sheet shifts the outboard locations of
the largest fluctuations away from those corresponding to the LV by
itself: �Y − Yo�∕θ ≈�Ro;v∕θ.
The conclusions of Fig. 11 are further reinforced using Fig. 12,

where the urms profile in Fig. 10b, obtained from the model, is
reproduced in Fig. 12a and compared with the urms profiles due to the
LV and the VS. The profile associated with the LV exhibits the
expected two peaks that are located approximately one core radius
away from the vortex center with zero urms at the center. On the other
hand, the vortex sheet profile possesses a shape that is commensurate
with the analysis of Fig. 11b. Specifically, the profile has a fairly
uniform central part near the middle of the shear layer, which is the
result of the advection of the inclined part of the VS. Two local
minima coincide with the location of the head and tail, with two
nearby local maxima associated with the induced velocity by these
parts. The three peaks of the overall urms are thus predominantly
produced by the inclined VS (the middle peak), and the LV together
with the induced velocity by the head and tail of the VS (the two
outboard peaks). It is interesting to note that though the LV
contribution to these outboard peaks is generally larger than the
contribution of the head and tail, the actual peak locations coincide
with the outboard peaks of theurms of the vortex sheet (for the reasons
given in the discussion of Fig. 11c). Overall, it is reasonable to expect
the relative prominence of the center versus the outboard peaks of the
urms distribution to depend on the development stage of the vortex.
Early in the development stage, most of the vorticity is in the vortex
sheet and hence one would expect the central peak to be more
prominent relative to the outboard peaks. In comparison, when the
vortex is fully formed, and hence the vortex sheet is weak or
nonexistent, the urms profile would be dominated by the
outboard peaks.
Figure 12b shows the full vrms profile that exhibits a single

maximum near the shear-layer center. Comparison with vrms of the
LVand the VS clearly shows the dominant influence of the LVon this
component of the velocity. The VS vrms profile possesses two local
maxima at the locations of the head and tail. This is expected given
that the velocity induced by the sheet normal to the sheet’s centerline
(which is in the Y direction in this case) is largest along the sheet’s
centerline. This is also true for the LV that exhibits a peak at the Y
location where the vortex core center is located. The presence of the
head and tail of the braid slightly enhances the v fluctuation produced
by the large-scale vortex away from the shear-layer centerline, while
they have no effect in the vicinity of the centerline.
In summary, the present work extends the capability of the vortex-

array model of [6] to handle regions where separated shear layers
have not completely rolled into detached vortices. It is important to
note that the model’s key advantage is not as a predictive tool, but
rather as an instrument to understand the physics of flows by
complementing computational and/or experimental information.
The above analysis demonstrates the utility of the model (and other
physics-based models in general) in probing flow physics in ways
that are difficult to undertake using high-fidelity computational and
experimental data alone, which aremore suited for obtaining accurate
flow quantities and phenomenological characterization of the flow

behavior. To be specific, we note that, for example, the present model
allowed decomposition of the vortex sheet and the large-vortex
influences on the streamwise velocity fluctuation, clarifying (among
others) 1) the flow physics leading to the triple-peaked shape of the
urms profile and 2) that the cross-stream locations of the side peaks in
the urms distribution are not coincident with the core radius of the LV,
as one might typically assume. Though these findings might have
been hypothesized based on actual data, demonstrating their
plausibility beyond hand waving would be very difficult without the
benefit of a low-order model like the present one.

VI. Conclusions

In this paper, it is found that an array of finite-core vortices is
effective in modeling vortical flow regions where the vorticity
distribution includes both vortex sheets and isolated vortices. This
conclusion is reached by assessing the model using existing data of
the unsteady streamwise velocity of a forced two-stream shear layer.
Overall, the model results agree well with the experimental data at
different phases of the oscillation cycle.
The utility of the model in understanding the physics of the

underlying flow is exemplified by using the model to conduct an
analysis to investigate the specific effect of different flow structures
on the velocity field. The analysis shows that both the large-scale
vortices and the braids influence the fluctuating streamwise velocity
(urms) profiles. Two urms peaks, above and below the shear-layer
centerline, are predominantly affected by the large-scale vortices.
However, these peaks are also influenced by parts of the braid that are
getting entrained into the vortex, at the top and bottom of the vortex,
causing the cross-stream location of the urms peaks to deviate from
those that would exist under the effect of the vortex alone.
Additionally, the braid is found to be responsible for the generation of
streamwise velocity fluctuations in the vicinity of the shear-layer
centerline. Overall, the relative importance of the large vortices and
the braids in producing streamwise velocity fluctuations appears to
depend on the “completeness” of the shear-layer roll-up into a vortex
(i.e., the stage of development of the vortex).
The model is used to obtain the fluctuating transverse velocity

(vrms) profile. Analysis of the latter shows that vrms is mostly
influenced by the large-scale vortex, which produces a vrms profile
with amaximumnear the center of the shear layer. Themaximum vrms

is found to be approximately twice that of urms. The vrms information
are predicted by the model because the experimental data are limited
to the streamwise velocity only. These observations highlight the
utility of the model in complementing limited data sets, in addition to
enabling deeper insights into the underlying flow physics. Themodel
also produces reasonable results with significant reduction in the
number of vortex elements, demonstrating the model’s potential
utility for fast real-time calculations in flow control applications.

Appendix: Determination of Model Parameters

As described in Sec. IV, a three-step procedure is used to determine
the vortex-array model parameters. In step 1, a simplified version of
the model is created by considering the LV to be the only flow

a) b)
Fig. 12 Velocity profiles induced by the vortex sheet and large-scale vortex: a) rms streamwise velocity; b) rms transverse velocity.
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structure; that is, by only using the first and second terms on the right-

hand side of Eq. (4). The model parameters Γo;v and Ro;v are set by

seeking the best match between the model calculation and the

measurement of u at the phasewhen the large-scale vortex passes the
measurement location. The “best match” is judged quantitatively

when the sum of the squared error ε2Y between the computed and

measured velocity profile over all Y measurement locations reaches a

minimum value. Specifically, the expression for ε2Y is given by

ε2Y�Φ� �
X
Y

h
hu�Y;Φ�ic − hu�Y;Φ�im

i
2

(A1)

where hu�Y;Φ�ic is the computed velocity at location Y and the

selected phase Φ, and hu�Y;Φ�im the corresponding measured

phase-averaged velocity.
The number of large vortices N in the model (or the streamwise

length of the model Lx � Nλ) is set based on the convergence of the

velocity calculation (see Figs. 6 and 7). Here Lx∕λ � N is set to 50.
The phase of an LV passing through the measurement location is
determined as that where the extent of the high-shear zone in the Y
direction (as defined in Fig. 4) reaches a maximum value. This
criterion avoids selecting a location where the VS is present at the
measurement location because the scale of the vortex shear zone in
the Y direction is appreciably larger than that of the vortex sheet
(e.g., compare the shear zone extent atΦ � 0.625 to that atΦ � 0 in
Fig. 4). However, it is found that the variation in thewidth of the shear
zone varies slowly with phase in the vicinity of the phase where the
shear zone extent is largest. Therefore, to “pin-point” the phase at
which the vortex is collocated with the measurement location, the
target phase is identified as that where the difference between
the maximum and the minimum streamwise velocity is largest.
The latter criterion is based on the fact that the largest streamwise
velocity induced by the vortex occurs above and below the vortex
core center.
Figure A1 shows the experimental data at the phase Φ � 0.55

when the LV is determined to be at the measurement location. The
data are compared with the calculation of the LV-only model using
Γo;v and Ro;v values that minimize εY in Eq. (A1). Overall, the two
profiles are qualitatively consistent, though some qualitative
differences are evident—notably the over- and undershoot at the peak
and valley of the profile.
In step 2, residual streamwise-velocity profiles are obtained after

subtracting the computed velocity induced by the LV from the
measured data. The resulting profiles at different phases of the
oscillation cycle are shown in Fig. A2. The diamond symbol in a
given plot represents the location Ymax of the negative shear with
maximum magnitude at a given phase of the oscillation cycle. This
location is expected to be the center of the vortex sheet passing
through the measurement location at the corresponding phase of
oscillation. Notably, between Φ � 0.5 and Φ � 0.6, there are two
local maxima in the magnitude of the negative shear on the upper and
lower side of the shear-layer centerline.
Fig. 15 (left) showsYmax versus phase using circles, which is seen

to move in the positive Y direction (notwithstanding some data
scatter) before dropping, fairly abruptly, atΦ � 0.55, and then rising
up again starting atΦ � 0.6. The quick drop ofYmax from the highest
to the lowest value should correspond to the passage of the LV
past Xm around Φ � 0.55, and the accompanying change in the VS

Fig. A1 Comparison between the computed and the measured velocity

profiles at the phase when the LV passes through the measurement
location. Model calculation is based on using only the first two terms on
the right-hand side of Eq. (4). Model parameters are Γo;v∕ΔUθ � 17.45,
Ro;v∕θ � 3.17, and Lx∕λ � N � 50.

Fig. A2 Profiles of the residual streamwise velocity at different phases of the oscillation cycle. Model parameters are Γo;v∕ΔUθ � 17.45,Ro;v∕θ � 3.17,
andLx∕λ � N � 50. Diamonds mark the location of highest magnitude of negative shear, and squares identify second local maxima in the magnitude of
the negative shear.
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location from the top to the bottom of the LV. The squares in Fig. 15

(left) represent the Y locations of the second local shear maximum

identified in Fig. A2 at phases around Φ � 0.55. Indeed, the large-
scale vortex depicted on the right side of the flow visualization image

in Fig. 4 shows that the two ends of the vortex sheet may co-exist

simultaneously at the top and bottom of the vortex structure.
In the model, the Y location of the centers of the small-scale

vortices representing the VS is set following the Y location of the

maximum shear (Ymax) at different phases of the oscillation cycle. For

the purposes of the model, the Ymax variation with phase for the braid

is converted into variation with X to describe the locus along which

the n small-scale vortices are placed. This is achieved by multiplying

the time corresponding to a given phase by Uo (the convection

velocity used in the model). The resulting locus of the VS is shown

in Fig. 15 (right) by circles, after shifting the phase such that the

center of the LV is located at X � 0 (and λ). To simplify the VS

representation and to address some of the scatter observed in the

experimentally determined sheet locus, piecewise linear representa-

tion is employed, resulting in four different linear segments, as

depicted with the broken line in Fig. 2 (right). Other representations

of the sheet locus data (e.g., polynomial fit) are possible but the

piecewise linear representation is selected here for simplicity. Within

each segment containingmore than two points, a least-squares line fit

to the data is employed to define the line representing the vortex sheet

locus. It should be noted that, in the model, the small vortices

representing the vortex sheet are distributed equally spaced (in X)
along the locus shown in Fig. 15 (right) over the domain X∕λ �
−0.05 to 1.05. The model also contains the parameter dYc, which

allows imposition of a Y offset between the core center of the large

vortex and Yo.
In step 3, the values for model parameters Γo;vs, Γo;v, Ro;vs, Ro;v,

and dYc are found using a steepest-descend optimization routine to

minimize the sum of the squared error between the model calculation

and the measurements of hui at all Y locations and phases of the

oscillation cycle, as given by

ε2Y;Φ �
X
Φ

X
y

h
hu�Y;Φ�ic − hu�Y;Φ�im

i
2

(A2)

For simplicity, the optimization was carried out for one parameter

at a time. A more sophisticated method of optimization may lead to

improvements in the model results. No such method was pursued,

given that the implemented approach was sufficiently satisfactory in

capturing the key features of the measured data.
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