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We present an investigation into the influence of upstream shear on the viscous
flow around a steady two-dimensional (2-D) symmetric airfoil at zero angle of
attack, and the corresponding loads. In this computational study, we consider the
NACA 0012 airfoil at a chord Reynolds number 1.2 × 104 in an approach flow
with uniform positive shear with non-dimensional shear rate varying in the range
0.0–1.0. Results show that the lift force is negative, in the opposite direction to the
prediction from Tsien’s inviscid theory for lift generation in the presence of positive
shear. A hypothesis is presented to explain the observed sign of the lift force on
the basis of the asymmetry in boundary layer development on the upper and lower
surfaces of the airfoil, which creates an effective airfoil shape with negative camber.
The resulting scaling of the viscous effect with shear rate and Reynolds number is
provided. The location of the leading edge stagnation point moves increasingly farther
back along the airfoil’s upper surface with increased shear rate, a behaviour consistent
with a negatively cambered airfoil. Furthermore, the symmetry in the location of the
boundary layer separation point on the airfoil’s upper and lower surfaces in uniform
flow is broken under the imposed shear, and the wake vortical structures exhibit more
asymmetry with increasing shear rate.

Key words: aerodynamics

1. Introduction

Current understanding of airfoil aerodynamics is based primarily on a uniform
free-stream velocity approaching the airfoil. There are many situations, however,
where significant disturbances are encountered during flight such that the condition of

† Email address for correspondence: hammerpa@egr.msu.edu
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FIGURE 1. Schematic of flow geometry considered by Tsien (1943).

a uniform approach velocity is a very poor approximation. These situations include
wings near the ground, wind shear, ambient wind conditions that are altered by
large-scale disturbances (e.g. mountains), and aircraft operating in close proximity,
among others. The work of Tsien (1943) was among the earliest to investigate the
influence of non-uniform upstream conditions by considering a linear velocity profile
(i.e. uniform shear) approaching a steady 2-D symmetric Joukowsky airfoil. The
control parameter in this case is the non-dimensional shear rate, defined by Tsien as
K = (c/Uo) dU∞/dy (see figure 1 for a sketch of the flow geometry and description
of the variables). Tsien’s inviscid analysis showed that the effect of uniform shear
is a shift in the zero-lift angle of attack (AoA). An essential conclusion was that a
symmetric airfoil at zero AoA that is immersed in an approach flow with positive
shear generates positive lift, i.e. the zero-lift AoA that would be normally zero in
the case of uniform flow shifts to a negative AoA in the case of positive shear.
Additionally, the magnitude of generated lift at zero AoA increases with shear rate.
The work of Tsien was subsequently extended to more general velocity profiles in
several studies, all of which are again limited to inviscid flows. Systematic studies of
the influence of upstream shear on airfoil aerodynamics in real viscous flows are hard
to find. One exception is the wind tunnel experiments of Payne & Nelson (1985) on
a steady airfoil in uniform shear at chord Reynolds numbers on order of 105. It is
difficult to conclusively determine the influence of shear on lift at zero AoA based
on the reported data.

In view of the lack of knowledge described earlier, this work examines how the
basic flow characteristics of steady airfoils, and the corresponding loads, are altered
when the upstream approach flow is changed from the traditional uniform conditions
to that of non-uniform flow. The particular focus of the current paper is to consider the
viscous flow around a steady 2-D symmetric airfoil at zero AoA, and to assess Tsien’s
inviscid theory for lift generation in the presence of shear. We consider the NACA
0012 airfoil at a chord Reynolds number Rec=Uoc/ν= 1.2× 104 (where ν represents
the kinematic viscosity), for which a great deal of experimental and computational
data are available when the upstream flow is uniform. A computational approach is
used here to obtain the loads on the airfoil over a range of non-dimensional shear
rates K, along with details of the flow field around, and in the wake of the airfoil. In
addition to comparing the lift force against the inviscid prediction, the data also allow
us to quantify and report the various asymmetries in the flow that arise as a result of
imposed shear (e.g. boundary layer separation location, wake structure, etc.), the type
of information that is not available from inviscid theory.
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2. Computational considerations

2.1. Governing equations and numerical method
The computations are performed using the full, compressible, unsteady, 2-D
Navier–Stokes equations cast in strong conservative form after introducing a general
time-dependent curvilinear coordinate transformation from physical to computational
space (Vinokur 1974; Steger 1978; Tannehill, Anderson & Pletcher 1997). These
equations are augmented using the perfect gas relationship, a constant Prandtl number,
Sutherland’s viscosity law and Stokes’ hypothesis for the bulk viscosity coefficient.

All simulations are performed with the extensively validated high-order Navier–
Stokes solver FDL3DI (Gaitonde & Visbal 1998; Visbal & Gaitonde 1999), the salient
features of which are given briefly below. A finite-difference approach is employed
to discretize the governing equations, and all spatial derivatives are obtained with
high-order compact-differencing schemes (Lele 1992). A sixth-order scheme is used
here at interior points, whereas at boundary points, higher-order one-sided formulae
are invoked which retain the tridiagonal form of the scheme (Gaitonde & Visbal
1998; Visbal & Gaitonde 1999).

In order to eliminate spurious components, a high-order, low-pass spatial filter
(Gaitonde & Visbal 1998; Visbal & Gaitonde 1999) is incorporated. This filtering
approach is based on templates proposed in Alpert (1981) and Lele (1992), and with
proper choice of coefficients provides up to tenth-order accuracy. Filter operators,
along with representative filter transfer functions, can be found in Gaitonde &
Visbal (1998) and Gaitonde & Visbal (1999). The filter is applied here to the
conserved variables along each transformed coordinate direction using an interior
eighth-order filter with filter coefficient αf = 0.4. At near-boundary points, the filtering
strategies described in Gaitonde & Visbal (1999) and Visbal & Gaitonde (1999) are
used. Finally, time marching is accomplished by incorporating an iterative, implicit
approximately factored procedure (Beam & Warming 1978; Pulliam & Chaussee
1981; Visbal & Gaitonde 2002; Visbal, Morgan & Rizetta 2003).

The inviscid solution of the NACA 0012 airfoil in uniform shear is computed using
an in-house panel code based on Katz & Plotkin (2001). Each panel has a vorticity
distribution that varies linearly in strength along the panel. The only difference in
this implementation of the panel method from Katz & Plotkin is that the traditional
uniform free stream U∞ is replaced by the imposed spatially varying free stream
U∞(y). The velocity from the approach flow at each panel depends only on the panel
y-coordinate. The accuracy of the panel code is verified by comparing its prediction
against the exact solution of Tsien (1943) for the Joukowsky airfoil in uniform shear.

2.2. Flow and computational parameters
The various computational parameters (grid resolution, time-step resolution, Mach
number, etc.) given in this section are based on previous extensive convergence
studies by Hammer (2016) for the case of uniform approach velocity and additional
confirmation for the highest shear rate of K = 1.0 considered here. Details are not
shown for brevity.

The geometry considered is a NACA 0012 airfoil with a rounded trailing edge
(rTE= 2.2× 10−3c). An overset computational grid is used for this work (see figure 2).
An O-grid (figure 2a) wraps around the airfoil with dimensions 655 × 165, leading
edge spacing 1ξLE= 5.0× 10−4c, trailing edge spacing 1ξTE= 2.5× 10−4c, and initial
normal spacing at the wall 1ηwall = 5.0× 10−5c. A single Cartesian background grid
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Airfoil Airfoil and wake Far field232c(a) (b) (c)

High wake resolution

4.0c

View a 1.8c
View bView b

FIGURE 2. Schematic of computational domain, showing three fields of view. In views
(a) and (b), grid points have been removed for clarity.

is used to maintain the shear profile while resolving the wake structure with high
spatial resolution (figure 2b,c). Holes are cut in the background grid to blank out the
region of the background grid coincident with the O-grid. The high-resolution wake
region covers four chord lengths downstream of the trailing edge in the streamwise
direction and 1.8 chord lengths in the transverse direction with a uniform spacing of
2.5× 10−3c. The Cartesian grid is then rapidly stretched to over 100 chords in each
direction. This stretching along with the high-order filter helps eliminate spurious
reflections off the boundary (Visbal & Gaitonde 1999). Grid communication and
low-order interpolation is performed as a pre-processing step using Pegasus 5 (Suhs,
Rogers & Dietz 2002), which is then extended to high order (Sherer & Scott 2005;
Sherer & Visbal 2007).

The boundary conditions are prescribed as follows. A no-slip, adiabatic condition is
applied to the surface in conjunction with a zero-normal pressure gradient at the wall.
A prescribed streamwise velocity profile U∞(y), uniform static pressure, and uniform
total temperature are specified along the upstream far-field boundary. At the three
additional far-field boundaries, a first-order accurate extrapolation condition is applied
to the primitive variables, except for pressure, which is uniform. Spatial periodicity
is enforced in the azimuthal direction of the O-mesh using a five-point overlap. The
solution is initialized with the specified velocity profile, uniform static pressure, and
uniform total temperature everywhere in the domain.

The inviscid theory by Tsien (1943) is based on a shear profile that extends to
infinity, a boundary condition that is difficult to reproduce in the current computations
since at high enough shear rates the velocities, and corresponding Mach numbers,
become extremely large away from the airfoil (positive in the upper domain and
negative in the lower). It is also incredibly challenging to create the equivalent
boundary condition for experiments, especially the reverse flow profile below the
airfoil. Therefore, our work utilizes a three-segment profile as the boundary condition,
where the uniform shear zone (and its linear velocity profile) occurs over a finite
region of thickness δ and the velocities outside this region are uniform. The details
are shown schematically in figure 3. This composite profile is now characterized by
the non-dimensional shear rate K = (c/Uo) dU∞/dy introduced by Tsien (1943) and
the new parameter δ/c. The results we discuss in this paper are for large enough δ/c
such that the finite size of the shear zone does not influence the outcome.

The chord Reynolds number in this study is 1.2 × 104 based on the chord length
c, and centreline velocity Uo. The non-dimensional shear rate K varies between 0.0
(uniform flow) and 1.0. Data are primarily presented here for the case of δ/c= 1.5,
determined to be large enough to make the results insensitive to increasing δ/c
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y
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c

FIGURE 3. Schematic of three-segment linear velocity profile used for the upstream
boundary condition in the current computations.
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FIGURE 4. (a) Average lift coefficient CL versus shear rate K for the NACA 0012 airfoil
at Rec = 1.2× 104 in comparison to the inviscid solution. The inviscid NACA 0012 and
12 %-thick Joukowsky airfoil (J 12) solutions are both included. (b) Comparison of the
inviscid solution of the negatively cambered NACA β412 airfoil with the viscous solution
of the NACA 0012 airfoil at Rec = 1.2× 104. Maximum camber β = 2 % at K = 1.0 and
linear K scaling is used to obtain β for other K values.

(see figure 4a). Based on the previous work by Hammer (2016), a low reference Mach
number Mo of 0.015 is selected to simulate the incompressible limit using the current
compressible flow Navier–Stokes solver. The wake of the airfoil at the Reynolds
number of this study is unstable and leads to a nearly periodic flow field and load.
The solution is advanced in time with a non-dimensional time step (1τ = 1tUo/c)
of 5.0× 10−5 with five subiterations per time step. Once the cycle-to-cycle variation
in average lift and drag reaches less than 1 %, data are averaged over a single cycle
using the period of lift fluctuation.

2.3. Validation
Validation of the current results is presented for the uniform flow case against existing
data from experiments (Laitone 1997) and computations (Liu & Kawachi 1999; Young
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Source CD

Current 0.0350
Laitone (1997): CD = 0.35Re−0.25

c 0.0334
Liu & Kawachi (1999) 0.0346
Young & Lai (2004) 0.0361

TABLE 1. Comparison of CD for NACA 0012 at Rec = 1.2× 104 and AoA= 0◦ in
uniform flow.

& Lai 2004). Comparison of the drag coefficient CD shown in table 1 illustrates the
very good agreement between the current results and published literature. The average
lift is zero in all these studies and is not useful for validation purposes. In addition,
the wake natural shedding frequency in the current computations is found to be within
2 % of the value from experiments by Koochesfahani (1989), and in exact agreement
with the value from computations of Young & Lai (2004) at the same Rec.

3. Results and discussion

3.1. Average load on airfoil
The average lift coefficient CL at zero AoA versus shear rate K is shown in figure 4(a)
for the viscous solution of the NACA 0012 airfoil at Rec = 1.2× 104 in comparison
to its inviscid solution using the panel method. The accuracy of the panel code is
demonstrated to be excellent when tested against Tsien’s exact solution for a 12 %-
thick Joukowsky airfoil (J 12); see figure 4(a). Note that the inviscid CL for the NACA
0012 airfoil increases linearly with K just as the 12 %-thick Joukowsky airfoil, but
with a slope that is higher by 12.8 %, a consequence of the shape difference between
these airfoils.

The most important result from figure 4(a) is that the behaviour of the viscous
solution is fundamentally different from its inviscid counterpart. In the former, the
sign of lift is negative (i.e. downward force), which is exactly the opposite of the
inviscid prediction. Its magnitude, however, increases with shear rate K in a nearly
linear fashion. We note in figure 4(a) that increasing the size of the shear zone by
a factor of two to δ/c = 3.0 has a minimal impact on the lift force, supporting the
earlier assertion in § 2.2 that δ/c= 1.5 is a sufficiently large value (highest values of
K were not computed for δ/c= 3.0 as it led to back flow in the approach stream on
the low-speed side). The influence of upstream shear on the drag coefficient is found
to be weak; results (not shown here) indicate that CD decreases monotonically with
increasing K, with CD at K = 1.0, dropping by only 2 % compared to its value for
uniform flow (K = 0.0).

Our hypothesis for generation of negative lift at zero AoA for a symmetric airfoil
placed in a flow with positive shear is connected to the asymmetry of boundary layer
development on the upper and lower surfaces of the airfoil. In positive shear, the upper
boundary layer grows in a region with higher free-stream velocity compared to that
on the lower surface, resulting in a thicker boundary layer on the lower surface than
the upper surface. The resulting difference between the corresponding displacement
thicknesses effectively creates an airfoil with negative camber (camber towards the
low-speed side), leading to negative lift.
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Lift on a steady 2-D symmetric airfoil in viscous uniform shear flow

We now provide a first-order estimate of the resulting effect using laminar boundary
layer relations for attached flow. The upper and lower surface boundary layer
displacement thicknesses (δ∗U and δ∗L) at a given downstream location on the airfoil
surface are given as δ∗U/c ∼

√
ν/(cUU) and δ∗L/c ∼

√
ν/(cUL), where UU and UL

correspond to the characteristic free-stream velocities for boundary layer growth
on the upper and lower surfaces, which can be written as UU ∼ Uo(1 + Kt/2c)
and UL ∼ Uo(1 − Kt/2c), respectively, with t representing the airfoil thickness. The
resulting ‘effective’ camber yc= (δ

∗

U − δ
∗

L)/2 can be simplified for K(t/2c)� 1 to the
following expression

yc

c
∼−

1
√

Rec
K
( t

2c

)
. (3.1)

Classical inviscid flow analysis of cambered Joukowsky airfoil (e.g. see chap. 4 of
Currie 1993) connects the lift due to camber to the maximum camber of the mean
camber line, which for small values of camber reduces to a linear relation between
lift and maximum camber. Using this connection as a guide, we would estimate the
additional lift caused by the effective camber described earlier to be negative and
given as

CL ∼−
1
√

Rec
K
( t

2c

)
. (3.2)

We note that the effective camber, and therefore also the resulting lift magnitude,
in this first-order model, is linear in both shear rate K and airfoil thickness ratio t/c
and decreases as 1/

√
Rec.

In this description, the lift of a symmetric airfoil at zero AoA in viscous flow with
positive shear will always be lower than its inviscid counterpart (i.e. Tsien’s theory)
by the expression given above. The results in figure 4(a) for Rec = 1.2 × 104 imply
that the lift reduction due to negative camber at this Reynolds number is large enough
to change the positive lift prediction of Tsien’s theory to negative lift. To get a sense
of the magnitude of negative camber that is required to reproduce the viscous flow
results in figure 4(a), we obtain the inviscid solution (using the panel method) of shear
flow at K= 1.0 past a 12 %-thick cambered NACA airfoil. We find, for example, that
the negatively cambered NACA 2412 airfoil (2 % maximum camber located at 0.4c)
reproduces the CL value of the viscous solution at K = 1.0. Extending the inviscid
computation to lower values of K, after applying the linear K scaling to obtain the
corresponding maximum camber β (its location fixed at 0.4c) leading to the NACA
β412 series of airfoils, reproduces the viscous solution of CL versus K in figure 4(a)
remarkably well; see figure 4(b). We should emphasize that the family of cambered
airfoil shapes NACA β412 we have described above is not unique for reproducing
the viscous solution. A similar outcome can be achieved by placing the maximum
camber at other locations than 0.4c and adjusting the value of maximum negative
camber accordingly.

The model developed here also allows us to give an estimate for how high the
chord Reynolds number should be before the inviscid theory of Tsien (1943) becomes
applicable. From inviscid calculations, we first determine the lowest value of negative
effective camber that is required to yield CL versus K results that reach 90 % of
Tsien’s theory. The outcome in comparison with the already-established value of
negative camber at Rec = 1.2 × 104, in conjunction with the 1/

√
Rec scaling of
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FIGURE 5. (a) Average streamlines and spanwise vorticity field (ωz,avgc/Uo) for uniform
flow K= 0.0, shear flow K= 1.0 and front stagnation point location for each in a zoomed-
up view of the leading edge. A green horizontal line at the centreline y= 0 originating
at the airfoil leading edge is shown for reference. (b) The location of the front stagnation
point, ξstag, for different shear rates.

effective camber, indicates that chord Reynolds number needs to be as high as
Rec = 2 × 106 to get to 90 % of the inviscid prediction. It is important to recognize
that the model given above and its prediction are constrained by its assumptions of
thin laminar boundary layers and attached flow, which cease to be uniformly valid
over the curved surfaces of the airfoil as the Reynolds number varies.

3.2. Flow-field characteristics

We now present some of the asymmetries that develop in the flow field due to
the imposed shear. The time-averaged spanwise vorticity field, ωz,avgc/Uo, and
accompanying streamline pattern are shown in figure 5(a) for uniform flow (K = 0.0)
and the highest shear rate case (K = 1.0) studied here. For the symmetric airfoil
in uniform flow, the stagnation streamline is aligned with the centreline (y = 0)
and the front stagnation point is located at the leading edge, as expected. However,
for the same symmetric airfoil placed in positive shear the stagnation streamline
approaches the airfoil from above the centreline and the front stagnation point moves
above the leading edge. The location of the stagnation point moves increasingly
farther back along the upper surface with increased shear rate; see figure 5(b).
The observed behaviour of the leading edge stagnation point is consistent with
what is expected from an airfoil which, while geometrically symmetric, behaves
effectively as a negatively cambered airfoil. As discussed in § 3.1, the magnitude of
the effective (negative) camber increases with shear rate K, a consequence of which
is the movement of the front stagnation point along the upper surface displayed in
figure 5(b).

Another asymmetry that develops due to imposed shear is the location of boundary
layer separation on the upper and lower surfaces, as illustrated in figure 6. For uniform
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FIGURE 6. (a) Boundary layer separation points marked on the average spanwise vorticity
field for different shear rates. (b) Average separation point location xsep versus K. Solid
lines represent curve fits to data.

flow (K= 0.0) past the NACA 0012 airfoil at Rec= 1.2× 104, the boundary layers on
the upper and lower surfaces remain attached until separation occurs symmetrically at
xsep/c= 0.815. The separation point is defined here as the location where the average
surface shear stress reaches zero. When the approach flow has positive shear, the
boundary layers develop asymmetrically on the upper and lower surfaces. Results show
that as the shear rate K increases, the separation point on the upper surface (high-
speed side) moves upstream. Conversely, the separation point on the lower surface
(low-speed side) moves downstream, and at K = 1.0 reaches the trailing edge.

Finally, we present the changes that occur in the airfoil wake structure upon
imposed shear; see figure 7. For uniform flow past the airfoil, the wake instability
leads to the well-known formation of the Kármán vortex street (see top image of
figure 7a). The natural shedding Strouhal number for uniform flow at the Reynolds
number of this study is found to be Stn ≈ 2.7, where Stn = fnc/Uo with fn being
the shedding frequency of the wake, which we obtain from the time history of the
periodic lift fluctuation. The influence of upstream shear on the wake structure is
captured in the instantaneous maps of the vorticity field, ωzc/Uo, in figure 7(a) for
different shear rates K. For reference, the approach shear flow has a uniform negative
vorticity given by −K. We note from figure 7(a) that as the shear rate increases, the
vortical structures in the wake exhibit more asymmetry, with the negative vorticity
getting stronger and positive vorticity getting weaker. Data for K = 1.0 indicate
that at x/c = 4 (i.e. three chord lengths downstream of the airfoil trailing edge),
the magnitudes of peak negative and positive vorticity have increased by 17 % and
decreased by 54 %, respectively, compared to their magnitudes in uniform flow.
Interestingly, however, the natural shedding Strouhal number depicted in figure 7(b)
changes very little, only about 5 % increase, in going from K= 0.0 (uniform flow) to
the highest shear rate K = 1.0.
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FIGURE 7. Influence of upstream shear on (a) the instantaneous spanwise vorticity field
(ωzc/Uo) and (b) the natural shedding Strouhal number Stn. Solid line represents a curve
fit to data.

4. Conclusions

The study presented here is our starting point in filling the knowledge gap in
the influence of non-uniform approach flow on basic flow characteristics of airfoils,
and the corresponding loads, which have been predominantly studied in the past
by inviscid analysis. Current results at a chord Reynolds number of 1.2 × 104 have
revealed several interesting flow-field asymmetries that develop as a result of imposed
shear; information that is not available from inviscid theory. A discovery has been
the negative sign of lift force on a symmetric airfoil at zero angle of attack when
it is placed in an approach flow with positive shear; an effect that is the opposite
of that expected from Tsien’s inviscid theory. Our explanation for the underlying
flow physics responsible for this effect argues for an airfoil that, while geometrically
symmetric, effectively behaves as an airfoil with negative camber, which is caused by
the asymmetric viscous boundary layer development on the airfoil upper and lower
surfaces. We should mention that a comprehensive experimental study to complement
the current computations is nearly complete, and recently reported preliminary results
by Olson, Naguib & Koochesfahani (2016) corroborate the negative sign of the lift
force reported here.

The simple model developed here to explain the negative camber effect provides
information on its scaling with Reynolds number. According to the model, the chord
Reynolds number needs to be as high as Rec = 2 × 106 in order to get to 90 % of
inviscid prediction. This first-order model and its prediction are, however, constrained
by its assumptions of thin laminar boundary layers and attached flow over the curved
surfaces of the airfoil, which are not uniformly valid with variations in Reynolds
number. A computational study is currently in progress to extend the current work
to higher Reynolds numbers and determine the approach to the inviscid solution.
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