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This work explores the aerodynamics of an airfoil oscillating in a uniform shear flow at chord-

Reynolds number of approximately 1.2104 using complementary two-dimensional Navier-Stokes 

computations and direct force measurements. A NACA 0012 airfoil is pitched harmonically about its 

quarter-chord, with 2 amplitude and reduced frequency up to 12, in positive-shear approach flow 

for non-dimensional shear values in the range 0.0 – 1.0. Previous steady airfoil results showed the 

development of negative lift at zero angle of attack in the presence of positive shear, opposite of the 

inviscid theory, and symmetry breaking in the wake. The negative lift magnitude and symmetry 

breaking in the wake increased with the non-dimensional shear rate.  In the current results for an 

unsteady airfoil, the wake also exhibits symmetry breaking that leads to a deflected wake towards the 

high-speed side as the reduced frequency increases beyond the reduced frequency for an aligned 

vortex street. Interestingly, the presence of shear seems to have little or no effect on the average thrust 

and peak-to-peak lift and thrust fluctuation, while a prominent influence is seen on the average lift. 

The latter switches sign from negative to positive at a reduced frequency of approximately 3, and it 

increases in magnitude with both increasing non-dimensional shear rate and reduced frequency.  

I. Introduction 

An extensive body of work exists on the unsteady aerodynamics of oscillating airfoils (e.g. [1-9]). Whether 

the oscillatory motion is in the form of pitch, plunge (heave), or a combination of both, the focus has been almost 

exclusively on uniform freestream conditions. There are many situations of engineering interest in which aircraft 

encounter non-uniform (shear) approach flows. These situations include wings near the ground, wind shear, ambient 

wind conditions that are altered by large scale disturbances (e.g. mountains), and aircraft operating in close proximity, 

among others. Understanding the unsteady forces acting on an oscillating airfoil in such situations is significant for 

predicting and controlling the aeroelastic behavior of airfoils; such as that associated with flutter vibrations. 

The overarching objective of the present study is to develop an integrated computational-experimental framework 

for the study of the aerodynamics of unsteady airfoils in an approach stream exhibiting prescribed non-uniformities. 
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In this paper, we report on the progress towards this goal by focusing on the specific case of small-amplitude, high-

frequency, harmonically pitching airfoils placed in a uniform-shear freestream (i.e., where the velocity varies linearly 

with the cross-stream coordinate). As depicted in Fig. 1, the shear zone is parameterized by its thickness  and velocity 

gradient, or shear rate, dU/dy. The corresponding non-dimensional parameters are /c and �̇� = (dU/dy)×(c/Uo); where 

c is the chord length and Uo is a reference velocity, defined as that of the approach stream at the cross-stream coordinate 

y of the pitch axis. Both computational and experimental efforts are reported with the goal of investigating the unsteady 

forces acting on the airfoil and their physical connection(s) to the flow features. 

 

Figure 1. Schematic of the flow configuration depicting a three-segment approach stream with a central uniform-shear 

segment having thickness  and bounded by high- and low-speed uniform streams with velocities U1 and U2 

respectively. Two coordinate systems are defined: (X,Y) with origin at the leading edge, and (x,y) with origin at the 

trailing edge, when the airfoil is at zero angle of attack.  

II. Computational Details 

A. Numerical Method 

The computations are performed using the high-order, extensively validated FDL3DI solver [10, 11], which 

solves the full, compressible, unsteady, three-dimensional Navier-Stokes equations. Here, the code is run to perform 

two-dimensional simulations. Upon transforming the Cartesian coordinate system (x, y, t) to a curvilinear coordinate 

system (ξ, η, τ), the governing equations are written in strong conservative form, resulting in the following: 

𝜕

𝜕𝜏
(
�⃑� 

𝐽
) +

𝜕�̂�𝐼

𝜕𝜉
+

𝜕𝐺𝐼

𝜕𝜂
=

1

𝑅𝑒𝑐
[
𝜕�̂�𝑉

𝜕𝜉
+

𝜕𝐺𝑉

𝜕𝜂
] (1) 

In Eq. (1), �⃑� = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝐸]𝑇 is the solution vector, J is the transformation Jacobian, �̂�𝐼  and 𝐺𝐼  are the inviscid 

fluxes, and �̂�𝑉 and 𝐺𝑉 are the viscous fluxes (refer to reference [12] for further details on these quantities). The two-

dimensional Cartesian velocity components are u and v, ρ is the density, and p is the pressure. The ideal gas law and 

Sutherland’s law for viscosity are also assumed to complete the set of equations. All flow variables have been 

normalized by their reference centerline values, except for pressure, which has been non-dimensionalized by 𝜌𝑜𝑈𝑜
2, 

where 𝜌𝑜 and 𝑈𝑜 represent the centerline, reference values. 

Time accurate solutions of Eq. (1) are obtained numerically using the implicit, approximately-factored method 

developed by Beam and Warming [13]. This expression had been simplified through the diagonalization of Pulliam 

and Chaussee [14] and supplemented with Newton-like subiterations to achieve second-order accuracy.  In “delta" 

form, this algorithm is given by: 
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[(

1

𝐽
)
𝑝+1

+ 𝜑𝑖Δ𝜏𝛿𝜉,2 (
𝜕�̂�𝐼

𝑝

𝜕�⃑� 
−

1

𝑅𝑒𝑐

𝜕�̂�𝑉
𝑝

𝜕�⃑� 
)] 𝐽𝑝+1 

× [(
1

𝐽
)
𝑝+1

+ 𝜑𝑖Δ𝜏𝛿𝜂,2 (
𝜕𝐺𝐼

𝑝

𝜕�⃑� 
−

1

𝑅𝑒𝑐

𝜕𝐺𝑉
𝑝

𝜕�⃑� 
)] Δ�⃑�  

= −𝜑𝑖Δ𝜏 [(
1

𝐽
)
𝑝+1 (1 + 𝜑)�⃑� 𝑝 − (1 + 2𝜑)�⃑� 𝑛 + 𝜑�⃑� 𝑛−1

Δ𝜏
+ �⃑� 𝑝 (

1

𝐽
)
𝜏

𝑝

 

+𝛿𝜉,6 (�̂�𝐼
𝑝 −

1

𝑅𝑒𝑐
�̂�𝑉

𝑝
) + 𝛿𝜂,6 (𝐺𝐼

𝑝 −
1

𝑅𝑒𝑐
𝐺𝑉

𝑝
)] 

 
 
 
(2) 

where 𝜑 = 1/2 yields second-order accurate algorithm, 𝜑𝑖 = 1/(1 + 𝜑), and Δ�⃑� = �⃑� 𝑝+1 − �⃑� 𝑝.  At the first 

subiteration level (p = 1), �⃑� 𝑝 = �⃑� 𝑛, where �⃑� 𝑝 is the subiteration approximation of �⃑� 𝑛+1. As the number of subiterations 

increases, �⃑� 𝑝 approaches �⃑� 𝑛+1. The use of subiterations allows for the elimination of errors due to the linearization, 

factorization, diagonalization, etc. On the unknown left-hand-side of Eq. (2), spatial derivatives are calculated using 

a second-order central difference scheme. Fourth-order, nonlinear artificial dissipation terms are added to augment 

stability in the left-hand side [15, 16], but these are not shown in Eq. (2). 

On the right-hand side of Eq. (2), a sixth-order compact finite difference scheme [17] is employed to discretize 

the governing equations. For any scalar quantity, 𝜙, such as a metric, flux component, or flow variable, the spatial 

derivative, 𝜙′, is obtained along a coordinate line in the computational domain by solving the tridiagonal system: 

𝜓𝜙𝑖−1
′ + 𝜙𝑖

′ + 𝜓𝜙𝑖+1
′ = 𝑎

𝜙𝑖+1 + 𝜙𝑖−1

2
+ 𝑏

𝜙𝑖+2 + 𝜙𝑖−2

4
 (3) 

High-order formulas that retain the tridiagonal form are used at the boundaries. To eliminate spurious frequency 

components, a high-order Padé-type low-pass spatial filter [10] is used. The filtered value of a component in the 

solution vector, �̂�𝑖 , is computed with the following tridiagonal system: 

𝜓𝑓�̂�𝑖−1 + �̂�𝑖 + 𝜓𝑓�̂�𝑖+1 = ∑
𝑎𝑛

2
(𝜙𝑖+𝑛 + 𝜙𝑖−𝑛)

𝑁

𝑛=0

 (4) 

With the proper choice of coefficients, the formula provides a 2Nth-order filter on a 2N+1 point stencil. For this work, 

an 8th-order filter is used for the interior points. Near the boundary, filtering strategies used by [11] are implemented. 

The filter is applied to the conserved variables along each coordinate direction once per time-step and subiteration. 

For additional details on the computations and validation based on a uniform approach flow, see reference [18]. 

 

B. Flow and Computational Parameters 

The computations are performed on a NACA 0012 airfoil with a rounded trailing edge (rTE = 2.2×103c).  An 

overset computational grid is used for this work (see Fig. 2). An O-grid (Fig. 2a) wraps around the airfoil with 

dimensions 655×165, leading-edge spacing ∆LE = 5.0×104c, trailing-edge spacing ∆TE = 2.5×104c, and initial 

normal spacing at the wall ∆wall = 5.0×105c. A single Cartesian background grid is used to maintain the shear profile 

in the approach stream while resolving the wake structure with high spatial resolution (Fig. 2b). Holes are cut in the 

background grid to blank out the region of the background grid coincident with the O-grid using NASA code Pegasus 

5 [19]. The high-resolution wake region covers four chord lengths downstream of the trailing edge in the streamwise 

direction and 1.8 chord lengths in the transverse direction with uniform spacing of 2.5×10-3c. The Cartesian grid is 

then rapidly stretched to over 100 chords (Fig. 2c). This stretching along with the high-order filter helps eliminate 

spurious reflections off the boundary [20]. Grid communication and low-order interpolation are performed as a pre-

processing step using Pegasus 5 [19], which are then extended to high-order [21, 22]. 
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Figure 2. Schematic of the computational domain, showing three fields of view with varying degrees of enlargement. 

In views (a) and (b), grid points have been removed for clarity. 

 

The boundary conditions are prescribed as follows. A no-slip, adiabatic condition is applied at the wall in 

conjunction with a zero-normal pressure gradient. The three-segment streamwise velocity profile (shown in Fig. 1), 

uniform static pressure, and uniform total temperature conditions are specified along the upstream far-field boundary. 

At the three additional far-field boundaries, a first-order accurate extrapolation condition is applied to the primitive 

variables, except for pressure, which is uniform. Spatial periodicity is enforced in the azimuthal direction of the O-

grid using a five-point overlap. The computation is initialized using the converged solution for the steady airfoil at 

zero angle of attack. 

The Reynolds number of the computations is 1.2104 based on the chord length, c, and the reference velocity, Uo. 

For the present work, the pitch axis at the quarter-chord is placed at the center of the shear zone. The non-dimensional 

shear rate �̇� varies from 0.0 (uniform flow) to 1.0, and the shear zone width  is set to 1.5c. This value is selected to 

be large enough such that the results are nearly independent of  ; i.e. equivalent of placing the airfoil in an infinitely 

wide shear zone. The reduced frequency, k = fc/Uo, where fis the oscillation frequency, varies from 0 to 

approximately 12. The pitching amplitude o is 2, with pitching done about the quarter-chord from the leading edge, 

resulting in a maximum Strouhal number based on trailing edge amplitude, St = kATE/c, of 0.2. Sinusoidal oscillations 

are utilized around a zero mean angle of attack for all simulations. 

The solution advances in time with a computational time-step, Δτ = ΔtUo/c, of 5.0×10-5 in conjunction with seven 

subiterations per time-step. To simulate the incompressible limit with the current compressible solver, a low reference 

Mach number, Mo, of 0.015 is used. Justification for the selection of these parameters is based on previous studies in 

uniform flow [18] and have been verified for the case of a shear approach flow. 

Simulations are carried out for 15 to 70 oscillation cycles, at which point the change in average lift and thrust 

coefficients converge to better than 1%. Ninety-six instantaneous phases spanning one oscillation cycle are then 

extracted from the simulation and wake data from both the airfoil grid and the background grid are remapped onto a 

Cartesian grid with uniform spacing of 2.5×103c for computing the time-average and rms of the streamwise (u) and 

cross-stream (v) velocity components.  

 

C. Grid Deformation 

Since the upstream boundary condition is spatially varying in the cross-stream direction, the overset grid is 

dynamically deformed, instead of rigidly rotated, to accommodate the sinusoidal pitching motion instead of rigidly 

rotated. The deforming grid strategies employed in [23-25] are used. First, two circles of diameters D1 and D2 are 

created in the domain centered about the pitching axis. All grid points within D1 define a region in which the grid 

rigidly rotates (Region 1) while grid points outside of D2 remain stationary (Region 3). The remaining grid points 

(Region 2) deform smoothly according to Eq. (5), where the blending function is defined as  = 10r3 – 15r4 – 6r5:   

 

�⃗�𝑑 = 𝛽�⃗�𝑢𝑑 + (1 − 𝛽)𝛥�⃗�𝑟𝑖𝑔 (5) 

 

In Eq. (5), �⃗�𝑢𝑑 is the position vector of the un-deformed grid points, �⃗�𝑑 is the position vector of the deformed grid 

points, 𝛥�⃗�𝑟𝑖𝑔 is the displacement vector due to rigid-body motion. Note that  = 0 for grid points in Region 1 and  = 

1 for grid points in Region 3. Although no issues related to the size of the deforming zone (and hence far-field grid 

resolution) are observed for the uniform flow case, numerical artifacts are seen in the shear case when the deforming 

zone encompasses grid points being stretched to the far field. By using D1 = 2c and D2 = 10c, the deforming zone 

remains close to the airfoil and does not distort the approach velocity profile. 
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III. Experimental Details 

The experiments are conducted in a closed-return 61 cm  61 cm free-surface water tunnel at the Turbulent Mixing 

and Unsteady Aerodynamics Laboratory (TMUAL) at Michigan State University. The tunnel is fitted with a three-

degree-of-freedom (3DOF) servo motion system that is capable of producing pitch, heave and surge motion. Only the 

pitch motion is utilized in the present work. A NACA 0012 airfoil with 12 cm chord length and aspect ratio AR = 5.14 

is attached to the pitch axis via a force balance, as depicted in Fig. 3. The shaft connecting the airfoil to the balance, 

passes through a “skimmer plate” (not shown in Fig. 3), which skims the water free surface and spans the full test-

section width to avoid disturbing the free surface during airfoil oscillation, and to provide a well-defined boundary 

condition on the top side of the airfoil. Less than a 0.5 mm clearance gap is left between the top end of the airfoil and 

the skimmer plate, on one hand, and the bottom end of the airfoil and the test section floor, on the other. The pitch 

motor is fitted with high-resolution encoder that captures the airfoil pitch angle with high resolution: 0.003 degrees.  

 
Figure 3.  3D model of the water tunnel test section, depicting the vertical airfoil mounted to the 3DOF motion system 

on top of the test section (left). Details of the 3DOF system and airfoil mounting (right). 

 

To generate shear in the freestream, the shaped honeycomb technique of [26], with some additional refinements 

[27], is used. The desired cross-stream velocity variation downstream of the honeycomb is prescribed and the 

honeycomb profile shape required to produce this variation is computed for a 61 cm wide, 3.175 mm cell-diameter 

honeycomb structure. The device is inserted in the path of the uniform flow entering the test section (see Fig. 4) in 

order to produce variable flow resistance, and hence generate variation in the velocity in the cross-stream direction. 

For the present measurements, a three-segment profile with a central uniform-shear zone having�̇� = 0.5 and /c = 2.0 

is targeted. The actual velocity profile produced by the honeycomb is measured using molecular tagging velocimetry 

and the results are displayed in Fig. 5. In comparison to the target velocity profile (also shown in Fig. 5), the actual 

velocity variation exhibits an undershoot where the shear zone meets the low-speed stream, a rather small overshoot 

on the high-speed side, and the overall velocity difference across the shear (U = U1-U2) is less than intended. 

However, a fairly sizable central zone with linear velocity variation (uniform shear) is observed. The uniform-shear 

zone width is approximately 1.7c and the shear rate �̇� = 0.48.  
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Figure 4. Top view of the test section showing placement of the honeycomb shear generator, a schematic of the 

approach stream velocity profile and the NACA 0012 airfoil. 

 

 
Figure 5. Measured streamwise velocity profile of the approach stream (red symbols), with the target profile (blue 

line) shown for reference.  The experimental profile is measured without the airfoil in the flow where the leading edge 

would be. 

 

Load measurements are carried out using an ATI Mini40 six-component force balance/load cell. Only the lift and 

drag force components are measured in the present study. To account for the inertia forces produced during oscillatory 

pitching due to the mass of the airfoil, support shaft, and other components mounted on the pitch axis, force 

measurements are conducted with the airfoil placed in still air while executing the same pitch oscillations as used in 

the water tunnel tests. Results from these measurements are found to be negligible (primarily due to the axially aligned 

center of mass of all sub-components) and are therefore, not utilized in this study. Also, “flow-off” measurements of 

forces are conducted in the water tunnel immediately preceding and following the “flow-on” measurements. The 

duration of each experiment is kept to less than 15 minutes such that load cell drift is also neglibly small (less than the 

resolution reported below). The resolution, based on sensor specifications, of lift/drag force measurements is 0.005 N 

for the Mini 40. The corresponding lift/drag coefficient resolution is 0.014. The uncertainty of the mean force 

coefficient measurements for the static airfoil tests is estimated to be 0.005 based on the standard error of the mean 

and accounting for drift over the duration of each measurement. 

Zero angle of attack is determined from force measurements versus angle of attack for the static airfoil in uniform 

approach stream. The angle at which the total measured sectional force vector magnitude is minimum is taken as 

m = 0. In addition, possible small misalignment between the force axes of the load cell and the flow coordinates is 

accounted for iteratively by checking the symmetry of the lift and drag measurements with respect to m = 0.  For all 

cases, the airfoil is pitched harmonically around the quarter-chord point. The oscillations have a fixed amplitude of 2 

and the airfoil oscillates with several reduced frequencies extending from k = 0.0 (no oscillation) to k = 6.0. The 

reference velocity Uo is set to 10 cm/s, yielding a chord Reynolds number Rec = 1.25104, which is close to the 

Reynolds number in the computations. 
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IV. Results 

A. Aerodynamic Characteristics of a Steady Airfoil in Shear 

Before considering the unsteady airfoil, it is of interest to demonstrate the effect of shear on the aerodynamic 

characteristics (i.e., loads and wake structure) for the baseline, steady airfoil. According to Tsien’s inviscid theory for 

a Joukowsky airfoil [28], the lift at zero angle of attack has the same sign as the approach-stream shear (i.e., the lift is 

positive in positive shear) and increases in magnitude as the shear rate increases. This results in an upward shift of the 

lift curve, and hence a negative shift of the zero-lift angle of attack. Fig. 6a shows the average lift coefficient CL against 

the non-dimensional shear rate for the steady NACA 0012 airfoil at zero angle of attack for both the viscous flow at 

Rec = 1.2104 and the corresponding inviscid solution. 

As seen in Fig. 6a, the CL magnitude increases with the shear rate while having a negative sign; opposite to that 

predicted by inviscid theory! The inviscid solution, also shown in Fig. 6a, is computed using a panel method that has 

been validated against Tsien’s theory for Joukowsky airfoil [25]; see the comparison between the yellow triangles and 

the black line in Fig. 6a. The explanation for the qualitatively opposite trends of the viscous and inviscid solutions is 

linked to the breaking of symmetry in the boundary layer evolution between the top and the bottom surfaces of the 

airfoil. This asymmetry is significant at sufficiently low Reynolds number to produce an apparent airfoil shape with 

negative camber. These details are the subject of a separate article [29]. Figure 6b shows experimental data of CL 

against mean angle of attack for uniform and shear approach flow. For comparison, the figure also contains a few 

CFD data points, which are computed by prescribing the upstream boundary condition to be the same as the measured 

experimental velocity profile; specifically, a spline fit to the red symbols in Fig. 5.  Both the CFD and the experimental 

data show shear in the approach flow shifts the zero-lift angle of attack to a positive value. Equivalently, the two 

approaches depict negative CL at zero angle of attack. 

 

 
Figure 6.  (a) Average lift coefficient vs. shear rate and (b) angle of attack for a steady airfoil at zero angle of attack.  

In the left plot, two inviscid-flow cases are included: one based on Tsien’s theoretical solution for 12%-thick 

Joukowsky (J12) airfoil [25], and the other using a panel method for J12 and NACA 0012 airfoils. The comparison of 

the J12 results from Tsien’s theory and the present panel method is used to validate the panel method. The CFD solver 

is FDL3DI [10, 11]. The data in the right plot, where “Shear” corresponds to �̇� = 0.48, include CFD results obtained 

using the same approach stream velocity profile as in the experiments (depicted in Fig. 5). 

 

The influence of shear on the baseline wake structure is visualized in Fig. 7 using instantaneous spanwise vorticity 

(z) fields. In uniform flow (�̇� = 0.0), the shear layer coming off the airfoil trailing edge goes unstable and rolls up 

into a classical von Kármán vortex street. In shear, the wake structure becomes asymmetric. At �̇�= 0.5, the negative 

vorticity in the wake, which has the same sign as the approach stream’s vorticity, becomes slightly higher while the 

positive vorticity diminishes. This asymmetry becomes more obvious as the shear rate increases to �̇� = 1.0. 
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Figure 7.  Instantaneous spanwise vorticity fields for different non-dimensional shear rates, with increasing shear rate 

from top to bottom.  The airfoil is steady and at zero angle of attack. 

 

B. Unsteady Airfoil 

1. Wake Characteristics 

Figure 8 displays cross-stream profiles of the average u and v velocity components in the wake of the airfoil in 

uniform stream (i.e., �̇� = 0.0) for different reduced frequencies, while Fig. 9 shows the corresponding rms velocity 

profiles. The profiles are extracted one chord length downstream of the trailing edge (x/c = 1.0). A few observations 

can be made, which are consistent with the well documented behavior of the wake of pitching airfoils in uniform flow; 

e.g. [1] and [8]. When the airfoil is steady (i.e., k = 0.0), there is a clear wake deficit consistent with the arrangement 

of the vortices in the von Kármán vortex street pattern (Fig. 7, top plot). At k = 5.2, the uavg profile maintains a deficit 

in velocity, suggesting the persistence of the Kármán vortex street pattern, as well as an over-shoot in velocity. At k = 

6.0, the uavg profile shows a slight jet, implying that the wake structure has flipped to a reverse von Kármán street 

pattern. As the reduced frequency increases further, the profile maintains the jet-like character with the magnitude of 

the centerline velocity increasing with frequency.  The average v profile remains nearly zero across the wake for all 

cases. The profiles of the streamwise and cross-stream velocity fluctuations exhibit one or more local peaks. The 

locations of these peaks can be readily connected to the wake vortex configuration. The sharp drop in centerline urms 

for k = 6.0 indicates the vortices are nearly aligned along the wake centerline when the wake switches over from the 

traditional to the reverse von Kármán street pattern; the so-called “neutral” wake. These features are well understood 

and have previously been replicated using a low-order vortex array model [29]. 

D
ow

nl
oa

de
d 

by
 P

at
ri

ck
 H

am
m

er
 o

n 
Ja

nu
ar

y 
8,

 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
8-

05
75

 



 

 

American Institute of Aeronautics and Astronautics 

9 

 
Figure 8. Cross-stream profiles of the average streamwise and cross-stream velocity, extracted at x/c = 1.0 for different 

values of the reduced frequency. The approach flow is uniform (�̇� = 0.0). 

 

 
Figure 9. Cross-stream profiles of the rms streamwise and cross-stream velocity, extracted at x/c = 1.0 for different 

values of the reduced frequency. The approach flow is uniform (�̇� = 0.0). 

Figures 10 and 11 provide the average and the rms profiles, respectively, of u and v for different reduced 

frequencies, extracted at the same location as the profiles in Fig. 8 and 9 (x/c = 1.0) for the highest shear rate 

considered, �̇� = 1.0. The most obvious feature of the uavg profiles that is distinctly different from the uniform-flow 

case is that they have an overall shape similar to that of the three-segment uniform shear profile of the approach stream 

“superposed” on the wake disturbance. This disturbance, or deviation from the shear profile, bears some similarities 

with the profiles for the uniform flow case. Specifically, at k = 0.0 and 5.2, the disturbance exhibits a deficit in velocity, 

while a jet-like flow is established over part of the wake at k = 8.0 and 11.9. At k = 6.0, the three-segment shear profile 

is almost undisturbed by the presence of the wake, suggesting the alignment of the wake vortices with the wake 

centerline. Thus, interestingly, it appears that the neutral wake is established at the same reduced frequency for both 
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the uniform and shear flow cases; unaffected by the presence of shear. Further confirmation of this conclusion will be 

seen when considering the wake flow structure below. 

Notwithstanding the noted similarities, there are a few differences between the uavg profiles of the uniform and 

shear flow. For k > 6.0, the maximum velocity in the jet progressively shifts in the positive y direction with increasing 

k, suggesting the wake deflects to the high-speed-side. Moreover, the deviation from the overall three-segment uniform 

shear profile is not jet-like for the entire width of the wake, as predominantly the case for uniform flow. A fairly 

substantial region of wake-like behavior is seen below the jet. The cross-stream width and deficit magnitude of this 

region increase with the reduced frequency. A similar combination of velocity deficit and excess is also seen at k = 

5.2, where the wake-deficit is the dominant part. The v-component of velocity also shows behavior that deviates from 

that observed for the uniform flow case. For k  6.0, the average-v profile is, for all practical purposes, uniform and 

having an overall magnitude near zero. At higher reduced frequencies, the profile becomes non-zero, with a maximum 

value occurring at the same height as the maximum in uavg. The average-v velocity, however, is negative over the 

majority of the profile. 

Considering the urms and vrms profiles, unlike the uniform flow case, a clear asymmetry is seen for all frequencies, 

except at k = 6.0 when the wake is nearly neutral. Below this frequency, there is a distortion in the profiles about y/c 

= 0.0, but the profiles persist near the wake centerline. In contrast, at the higher frequencies of k = 8.0 and 11.9, the 

asymmetry takes the form of an upwards shift in the profiles, similar to the average u and v profiles. One notable 

feature in the urms profile is the development of a third peak at k = 8.0, which is barely observable for the uniform flow 

case. This middle peak exceeds the other two peaks in magnitude at k = 11.9. 

 

 
Figure 10. Cross-stream profiles of the average streamwise and cross-stream velocity, extracted at x/c = 1.0 for 

different values of reduced frequency at the highest shear rate considered (�̇� = 1.0). 
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Figure 11. Cross-stream profiles of the rms streamwise and cross-stream velocity, extracted at x/c = 1.0 for different 

values of reduced frequency at the highest shear rate considered (�̇� = 1.0). 

The wake structure is visualized in Fig. 12 using instantaneous spanwise vorticity (z) fields for the uniform and 

the shear (�̇� = 1.0) flow, side by side. As seen in Fig. 7, the steady airfoil in uniform flow produces a von Kármán 

vortex street, while the wake structure for the shear case has asymmetry, with the stronger vorticity having the same 

sign as the vorticity produced by the approach shear flow. At k = 5.2, the uniform flow case also produces a von 

Kármán vortex street, with more well-defined vortices and connecting braids than in the steady airfoil case. The shear 

case at this value of k shows a much more distorted structure but with the wake configuration remaining in the 

traditional von Kármán street formation by the end of the domain. During the early evolution of the wake (in the 

domain stretching to around X/c = 2.5), a secondary negative vortex is seen to form and pair with the primary negative 

vortex. At k = 6.0, the vortices are nearly aligned with the wake centerline for both the uniform and shear flow cases. 

This interesting similarity in the formation of the neutral wake is consistent with the observations made earlier based 

on the wake velocity profiles. At k = 8.0 and 11.9, the vortices in the uniform flow case take on the reverse von Kármán 

vortex street pattern. In shear, the vortices are also in a reverse von Kármán vortex street configuration (in the sense 

that the positive vortex is located above the negative one), but the pattern deflects upward towards the high-speed-

side. The pair of opposite-sign vortices shed during the same pitching cycle at these two reduced frequencies become 

isolated and self-propel upward. As the pair of vortices deflect up, vorticity “bleeds” off the negative vortex along the 

same path followed by the negative vortex. At k = 11.9, the vortices are also seen to turn back towards the wake 

centerline.  The angle of wake deflection visually increases as k increases, commensurate with the upwards shift in 

the jet-like flow and the rms velocity profiles observed for k = 8.0 and 11.9. Shear in the approach flow influencing 

the wake structure deflection was also observed in reference [31] but at a much lower Reynolds number of 3.0103.  
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Figure 12. Instantaneous spanwise vorticity fields for �̇� = 0.0 (left) and 1.0 (right), with increasing reduced frequency 

from top to bottom. The airfoil is at zero angle of attack and is pitching up. 

 

2. Forces 

Figure 13 depicts computational results showing the effect of the reduced frequency on the average lift coefficient, 

CL, average thrust coefficient, CT, peak-to-peak lift-fluctuation coefficient, CL,pp, and peak-to-peak thrust-fluctuation 

coefficient, CT,pp, for different shear rates. As expected, for the uniform flow case, the average lift coefficient is zero 

across the entire range of k. The average thrust coefficient begins at negative values (i.e., drag force), decreases in 

magnitude as k increases, switches sign to become positive, and then increases in magnitude. This trend, which is 

well-established in the literature, reflects the switch of the mean streamwise force from drag to thrust with increasing 

reduced frequency. The lift and thrust fluctuation amplitudes increase as k increases.   

In the case of shear, the most obvious difference from uniform flow occurs for the average lift coefficient. At low 

reduced frequency (k  1.5), the lift remains negative and does not change greatly in magnitude from its value at k = 

0.0. As the reduced frequency increases further, the average lift switches sign to become positive at k ≈ 3.0 and 

continues to monotonically increase in magnitude as the reduced frequency increases. Once positive, the average lift 

increases substantially in magnitude as �̇� increases, demonstrating a significant influence of shear on the mean lift. It 

is noteworthy that the generation of non-zero lift does not coincide with the development of a deflected wake (refer 

to Fig. 12). Moreover, for cases where the wake does deflect, the sign of the lift is contrary to the expected sign based 

on the wake deflection in the positive y-direction (i.e., high-speed side). These observations are consistent with 

behavior seen in the case of deflected wakes in uniform flow, where the connection between deflection direction and 

sign of lift is counter-intuitive; specifically, that the wake deflection is in the same direction as the lift force (e.g., 

[32]). 

In contrast, the average thrust shows no effect due to shear at frequencies below the switch over frequency (where 

the streamwise force switches from drag to thrust). At higher frequency, a small effect is seen where increasing �̇� 

augments the thrust coefficient slightly. The independence of the switchover frequency of �̇� is consistent with the 

establishment of the neutral wake for both the uniform and the shear flow at the same reduced frequency; seen earlier 

from the velocity profiles and vorticity fields (although the thrust switchover frequency is known to be higher than 

that for the establishment of the neutral wake). The observed behavior in lift and thrust are consistent with the 

observations in [31], where the lift increases at a given k as the shear rate increases and the thrust is not significantly 

impacted by shear. These observations were made at a chord Reynolds number of 3.0103, which is much lower than 

the present study. Figure 13 also shows that the lift fluctuation amplitude is uninfluenced by shear, while the thrust 

fluctuation amplitude weakly increases with �̇�.  
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Figure 13. CL, CT, CL,pp, CT,pp vs. k for different �̇� values from the CFD using the three-segment velocity profile. The 

solid orange lines represent CL = 0.0 and CT = 0.0 in the plots on top. 

 

Experimental observations of lift and thrust are commensurate with the CFD results. The average and peak-to-

peak fluctuation of lift and thrust obtained from force measurements are shown in Fig. 14. For comparison, the figure 

also contains CFD results based on the specific approach velocity profile of the experiments (Fig. 5). Overall, the 

behavior of the force coefficients in Fig. 14 is very similar that based on Fig. 13 (employing the idealized three-

segment approach stream profile). More importantly, the experimental data not only show qualitative but also 

quantitative agreement with the computations (with the exception of some discrepancy in the peak-to-peak values of 

CT). 

 

 
Figure 14. CL, CT, CL,pp, CT,pp vs. k from the experiments compared to counterpart results from CFD based on the actual 

experimental velocity profile (Fig. 5). The solid orange lines represent CL = 0.0 and CT = 0.0 in the plots on top. 
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V. Conclusions 

This work considers the effect of shear in the approach flow on the loads and wake structure of an oscillating 

airfoil using complementary two-dimensional Navier-Stokes computations and direct force measurements. The airfoil 

is a NACA 0012 profile while the flow is at a Reynolds number based on chord of approximately 1.2104. The airfoil 

pitches sinusoidally about its quarter-chord with amplitude of 2 and reduced frequencies k between 0 and 

approximately 12. The shear approach flow considered in this work is a three-segment profile with linear velocity 

variation over width . The non-dimensional shear rate in the computations varies from 0.0 to 1.0. The non-

dimensional shear rate in the experiments is 0.48, which is created using a variable-length honeycomb technique. The 

width of the shear zone, which is 1.5 times the airfoil chord c in the computations and approximately 2c in the 

experiments, is kept at a large enough value in order to have no effect on the results. 

The presence of shear is found to break the symmetry of the wake structure independent of the reduced frequency, 

and to lead to wake deflection towards the high-speed side at high enough reduced frequencies. Interestingly, the wake 

vortex street is aligned along the centerline (i.e., neutral wake condition) at k = 6.0 for both uniform and shear flow 

cases. Below this reduced frequency, the average streamwise velocity profile for both uniform and shear flows 

predominantly exhibits a velocity defect, or wake. On the other hand, for k > 6.0, a velocity surplus, or jet flow, is 

formed in the wake.  

Considering the loads on the airfoil, shear in the approach flow has the most prominent impact on the average lift. 

At k  1.5, the average lift coefficient has a small negative value and it does not change with increasing reduced 

frequency.  The lift coefficient decreases in magnitude at k > 1.5 until it switches sign at k  3.0, and increases in 

magnitude monotonically with reduced frequency for a given shear rate.  At a given reduced frequency, the magnitude 

of the lift coefficient increases with the non-dimensional shear rate. In contrast, little or no effect of shear is found on 

the average thrust coefficient and the peak-to-peak magnitude of the fluctuating thrust and lift. These conclusions are 

supported by both the computational and experimental results.  
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