Leverage Your Brain Power
Let Innovations to Support Innovations

Qian Huang, Ph.D., J.D.

Telephone: (202) 408 5546
Cell Phone: (240) 447 9877
Email: qian.huang@snrdenton.com
About SNR Denton

SNR Denton is a client-focused **international legal practice** delivering quality and value.

We serve clients in key business and financial centers from **79 locations in 53 countries**, through offices, associate firms and special alliances across the US, UK, Europe, the Middle East, Russia and the CIS, Asia Pacific, and Africa, making us a top 7 legal services provider by lawyers and professionals worldwide.

SNR Denton offers business, government, universities, and institutional clients premier service and a disciplined focus to meet evolving needs in **eight key industry sectors**: Energy, Transport and Infrastructure; Financial Institutions and Funds; Government; Health and Life Sciences; Insurance; Manufacturing; Real Estate, Retail and Hotels; and Technology, Media and Telecommunications.
Our Locations
The World We Are In

- Role of IP
 - Commercial world:
 - No IP, No market unless pay
 - Examples:
 - Apple v. Samsung
 - TransPerfect v. MotionPoint
 - Research institutions:
 - Funding is more tight
 - Leveraging IP is on the rise
 - IP has become a means to better support further research activities
 - Examples: UC, Boston University, CMU, MIT, Stanford, etc.
The World We Are In

- Real World Cases involving research institutions enforcing their patents
 - Successful enforcement
 - Regents of the University of Minnesota v. Glaxo Wellcome, Inc. (over $300 million settlement)
 - University of California v. Genentech, (over $200 million settlement)
 - Globespan Virata v. Texas Instruments ($112 million settlement)
 - University of Pittsburgh v. Varian Medical Systems, Inc. ($74 million settlement)
 - Failed enforcement
 - CMU v. Schwartz (patent was invalidated)
 - NYU v. Centocor ($1.67 billion judgment overturned on appeal for patent’s failure of written description requirement)
Unique Features in Developing IP at University

- Characteristics of university setting
 - Encompass more diversified disciplines
 - There are many more active thinkers (faculty, research staff, graduate students)
 - New ideas/improvements emerge everyday in all directions
 - Each research group is relatively autonomous
 - High volume of new submissions of publications
 - Graduate students come and go
 - Unrestricted communications with outside world on ideas
 - Software code: constant changes
 - Assignment (Stanford case)
What Is Involved?

- **Substantive Effort**
 - Identify good problems (key - academic v. industry): not easy
 - Solve problems that bother many: fully
 - Spot promising future direction (next hot thing): enable it
 - Develop solutions that are hard to get around
 - Enrich each idea by exploring alternative implementations to wrap around

- **Procedural Effort**
 - Timing is crucial
 - Select ideas that have greater commercial potential (funding is always limited)
 - Determine appropriate form of protection (copyright or patent?)
 - Coordinate effort from multiple parties to secure protection (faculty, students, university, and attorneys)
 - Seek licensing opportunities (monitor, strategize, and monetize)
What It Takes to Develop Useful IP?

- **Coordination Between Substantive & Procedural Efforts**
 - Timeline is well communicated
 - Coordination between publication & IP protection activities
 - Joint effort on getting IP that has better commercial potential
 - **Substantively:** (1) carefully determine topics, (2) conduct focused and organized research activities, (3) ensure timely submission for protection before publication, (4) ensure continuity in assisting the prosecution
 - **Procedurally:** (1) work with inventors on timeline, (2) follow up on the progression, especially on invention development, (3) be aware of publication submission dates, and (4) ensure IP protection prior to publication
 - Joint effort in identifying monetizing opportunities
Types of IP Protection?

- **Patents**
 - Directed to protect
 - Process, machine, manufacture, or composition of matter, or any new and useful improvement thereof (35 U.S.C. §101)
 - Threshold: Useful, novel, *non-obvious*

- **Copyrights**
 - Directed to protect *expression* rather than the idea behind the expression

- **Trademarks**: distinctive sign/indicator to identify the source of product/service

- **Trade Secrets**: Commercial information giving a business competitive advantage

Focus of this talk will be on patents & copyrights.
What is Patentable?

- Two Types of Patents
 - Predictable Art (CS, EE): experimentation may NOT be necessary to file a patent application to protect an idea (constructive reduction to practice is needed though)
 - Unpredictable Art (chemistry): experimentation is necessary and experimental result is crucial in supporting the innovation to be patented

- What ideas can be patented?
 - Does not have to be revolutionary (Bell’s phone)
 - Improvement can be quite valuable (e.g., coating a trench before depositing conductive material in the prior art process of making memory cells)
 - Combination of existing technology in a novel manner also patentable
 - Combine PDA with mobile phone into one
 - Combine existing Internet technology for website translation
When to Seek Patent Protection

- **Timing**
 - Crucially important in some fields (e.g., low entry barrier industry such as telecom, Internet, mobile)
 - Good ideas often emerge roughly at the same time
 - Example I: content rights management (3 months late)
 - Example II: Website translation (1 month difference with declaration)
 - More so for predictable art because many inventors rush to file patent applications as soon as they have the idea (no implementation)

- **How timing affects patentability**
 - First inventor, first file system
 - If anyone published the same idea, no novelty
 - If combination of prior technologies renders the idea obvious, not patentable
How Publications Impact Patent Rights?

- Patentability defeating events:
 - Prior Publications (even if your own – example)
 - Unrestricted public disclosure (talk, distribution of description, journal publication, book, thesis, conference presentation, peer review, etc.)
 - Prior Sale, offer for sale: unrestricted disclosure of functionality, blueprint, diagrams, etc. for sale (remedy: consider entering into non-disclosure agreement or NDA)

- Implications:
 - Publications surrender IP rights if no protection put in place
 - Publication can co-exist with IP protection if exercise timing management
 - Strategy: (1) filing for patent protection before making any unrestricted public disclosure or (2) put NDA in place when making disclosure
Obstacles In Timing Control In a University Setting

- High volume of publications and submissions
- Incremental improvement occurs everyday
- May lack of overall structured or controlled publication activities
- Hard to restrict idea exchanges with outside world (submission to peer review, discussion at academic gatherings, etc.)
- Often start with implementation of ideas and like to see experimental result before write down anything (lose time)
Useful Measures in Timing Control

- Streamline Consequential Events
 - Calendar publication activities with IP in mind
 - Get the draft down early enough without waiting till last minute
 - If predictable art, describe innovation first (in a manner that your peers would know how to practice) before implementing
 - Submit for consideration of filing patent application before implementation
 - Stage research activities to enhance timing control
 - Conduct brainstorm sessions on focused research issues
 - Submit the invention disclosure right after that for evaluation for patenting
 - Modify the invention disclosure during the evaluation period
 - Keep research notebook to have dates on each idea
Substantive Issues

- **Academic or Commercial?**
 - Threshold question to faculty in research
 - May lead to different ways to conduct the research

- **Ideas May be Assessed Differently**
 - What has higher academic value may not have much commercial value (a different modeling approach which is more expensive but may be more expressive unless there is a need for it in the commercial world)
 - What has commercial value may not have academic value (a little tweak to an existing approach may have great commercial value but hardly any academically)
 - Sometimes ideas have value in both (e.g., variable instruction length and re-configurable buffer size in multimedia processing)
Develop Ideas With Higher Commercial Value

- **Guided Invention Process**
 - Identify problems
 - Headache for the industry (bottleneck, e.g., e-commerce, video coding)
 - Natural yet unrealized capability given existing technologies (mobile device)
 - Next hot thing (computer capable of multimedia processing)
 - Develop effective solutions
 - Hard to get around (intuitive yet effective, otherwise solutions will be inferior on the balance)
 - Low entry barrier (easy to adopt, economical, no change to existing infrastructure/tool)
 - Full solution - explore alternatives to implement the solution
 - One limitation: research may be confined by the funding
Invention Process

- **How** (example)
 - Know what is out there
 - Devote sometime to learn what is in the industry (rather than publications)
 - Understand existing technologies and piece together (iPhone)
 - Play some products to know problems
 - Organized brain storm sessions
 - Identify directions (based on problems)
 - Head on with the problems
 - Send the topics to a group of people 1-2 days prior
 - No phone, no computer, no interruption for a number of hours
 - Moderating and fast moving
Prepare Patent Application

- **What Need to Be There?**
 - Specification: Written description, enablement, best mode
 - Claims: carve out the legal territory of the invention (unfamiliar form but crucial)
 - Drawings: not necessary but often present

- **Invention Disclosure**
 - As soon as possible (before implementation if possible)
 - Good academic publication may not be a good patent application
 - Design invention disclosure form or IDF with questions for facilitate evaluation
 - Paper form plus IDF can help attorneys towards a good patent application (academic papers may not meet those legal standards)
Prepare Patent Application

- Issues in patent drafting
 - Many research institutions submit papers as IDF (easiest)
 - Many attorneys simply re-format papers as patent application (also easiest but problematic)
 - Papers are often written in a manner not intended to teach person of ordinary skill in the art how to practice the invention.
 - Examples of failure on how a patent is written:
 - *NYU v. Centocor*, 1.67 billion judgment but overturned on appeal for failure of written description requirement) – huge loss due to how the application was written
 - Pfizer’s Viagra patent asserted worldwide – invalidated in England, China, and other countries for failure of enablement requirement
Claims

- Draft claims – Easy, Draft good claims – Not easy
 - Patent v. Will
 - Use long after drafting
 - When use, no longer can change anything
 - If find problems in use, it is too way late
 - Need to anticipate and avoid problems
 - Crucial to know where the technological boundary is
 - Claims craft the boundary between your territory and others’
 - Good understanding of technology helps to set the boundary correctly (better quality with lower cost)
 - Many drafting attorneys do not litigate patent cases
 - Not aware problems that can occur when a patent is used
What is a good claim - how big is your territory?

- Counter intuitive to most inventors: **Less is MORE** (where is my goodies?)
- **Wording** is crucial: (1) avoid ambiguous words (“remote”), (2) use more flexible words (“coupled with” rather than “linked to”)
- Capture the **essence** of the invention in the broadest form without more
 - If the key of the invention is A - Claim only enough to enable A
 - Technically competent attorney is crucial – know where is the boundary
- Claim both invention and application of the invention
 - Example, Qualcomm claims device that uses their technology
 - Lead to drastically enhanced commercial value
- Parallel claims (method, system, medium) to have all possible forms of implementation covered
Claims (Cont’d)

- Ensure Adequate Support in The Specification
 - Claim element by claim element – description found in the spec or drawing
 - Although initial claims self-supporting, not a good reliance (if avoidable, why fight?)
 - Real Life Case
 - *Panasonic v. Samsung*
 - Very costly to fix problem, if at all possible, during enforcement
- Follow the case law
 - Avoid disfavored claiming style (e.g., means plus function)
 - Avoid Internet jurisdiction issues (client/server, telecomm handshake algorithms)
 - Address joint infringer issues (vendor/customer, upstream/ downstream, software enabled induced infringement)
Protect An Inventive Method/Process

- Algorithm, Manufacturing Method, Automated Process
 - Manual Process (only protectable as a business method patent - difficult)
 - Computer implemented
 - Often as software or combined with hardware or manual operation
- What can be protected
 - The underlying algorithm or implementation (hardware or software)
 - A product from the novel process (product does not have to be new)
 - Copyright on the software, if applicable
Protect Inventive Method/Process (Cont’d)

- **Strategy**
 - Seek full protection: system, method, and medium
 - A method claim is directed to a computer implemented algorithm or process
 - A medium claim is directed to a medium (e.g., CD) that stores executable code of the software, which, upon being read by a machine (e.g., a computer or a mobile phone), will carry out the claimed method
 - Protect your invention against person who copies software and sells it via medium
 - A system claim is directed to the structure of a system (software or hardware) - many algorithms can be implemented via software or hardware modules
 - When involve multiple players (e.g., server and client)
 - Direct a claim to each party (direct infringement)
 - Have an overall claim covering the concert (induced infringement)
Is Copyright Protection Effective For Software?

- **Product Grade Software**
 - If a stabilized software product (e.g., WORD), it is appropriate to seek copyright protection
 - Goal is to prevent copying and distribution for commercial gain
 - Can also seek protection via medium claims
 - Advantage of copyright – 90 years after life

- **Research Oriented Software**
 - Often in a state of frequent modification - not cost effective because copyright is directed to specific “expressions” – limited protection to research oriented software
 - If University software subject to commercial use (e.g., a spin-off company distributes the software as a product), copyright protection may be appropriate
Scenarios I: Article or Apparatus Itself Is New

– Example: inventive apparatus is a new memory cell structure

What should be protected

– The new apparatus

– The process of creating the novel apparatus

– The application of the apparatus (e.g., memory array or even a device that has a memory with cells structured using the invention)

Goal:

– If a company (1) manufactures the apparatus, (2) uses the process to create the apparatus, or (3) apply the apparatus as claimed, a license is possible
Scenario II: Article/Apparatus Is Not New But the Process of Creating it is New
 – Example: a new or improved process of manufacturing a known memory cell structure (e.g., using a different wafer polishing technique so that it is more smooth)

What should be protected
 – The novel process
 – The apparatus created using the novel process
 – The application of the apparatus using the novel process (e.g., memory array or even a device that has a memory with cells structured using the invention)

Goal:
 – If a company (1) manufactures uses the process, (2) produce the apparatus using the process, or (3) apply the apparatus as claimed, a license is possible