1. University Requirements: (23-24)
   - Writing, Rhetoric and American Cultures (WRA) 4
   - Integrative Studies in Humanities (IAH) 8
   - Integrative Studies in Social Sciences (ISS) 8
   - Bioscience (one of the following):
     - BS 110, BS 111, ENT 205, MMG 201, MMG 301, PLB 105, PSL 250, ZOL 141 3-4

2. College Requirements: (30)
   - CEM 151 General and Descriptive Chemistry 4
   - EGR 100 Introduction to Engineering Design 2
   - EGR 102 Introduction to Engineering Modeling 2
   - MTH 132 Calculus I 3
   - MTH 133 Calculus II 4
   - MTH 234 Multivariable Calculus 4
   - MTH 235 Differential Equations 3
   - PHY 183 Physics for Scientists & Engineers I 4
   - PHY 184 Physics for Scientists & Engineers II 4

3. Major Requirements: (62)
   A. Complete all of the following: (44)
      - CE 221 Statics 3
      - CEM 152 Principles of Chemistry 3
      - CEM 161 Chemistry Laboratory I 1
      - *ECE 345 Electronic Instrumentation and Systems 3
      - ME 222 Mechanics of Deformable Solids 4
      - MSE 250 Materials Science and Engineering 3
      - MSE 310 Phase Equilibria in Materials 3
      - MSE 320 Mechanical Properties of Materials 3
      - MSE 331 Materials Characterization Methods I 1
      - MSE 350 Electronic Structure & Properties of Materials 3
      - MSE 360 Fundamentals of Microstructural Design 3
      - MSE 370 Physical Processing of Materials 3
      - MSE 381 Materials Characterization Methods II 2
      - MSE 466 Design and Failure Analysis (W) 3
      - MSE 477 Manufacturing Processes 3
      - STT 351 Probability and Statistics for Engineering 3

   B. Select two of the following courses: (6)
      - MSE 454 Ceramics and Refractory Materials 3
      - MSE 465 Design and Application of Egr. Materials 3
      - MSE 476 Phys Metallurgy of Ferrous & Alumn Alloys 3

   C. Complete at least 5 credits from 400-level courses within the College of Engineering: (5)

   D. Technical Electives: (7)
      Complete at least 7 credits in courses selected from a list of approved technical electives available from the Department of Chemical Engineering and Materials Science.

*ECE 302 and ECE 303 may be substituted for ECE 345.

Concentrations
Students may elect to complete a more focused set of courses to enhance their ability to function at the interface with another scientific, engineering, or business discipline. Concentrations are available to, but not required of, any student enrolled in the Bachelor of Science degree in Materials Science and Engineering. Completing the Bachelor of Science degree in Materials Science and Engineering with a concentration may require more than 128 credits. The concentration will be noted on the student's transcript.

Biomedical Materials Engineering Concentration: (25)
To gain interdisciplinary skills in human biology and earn a Bachelor of Science degree in Materials Science and Engineering with a biomedical materials engineering concentration, students must complete requirement 3. a. above and the following:

1. Complete all of the following: (16)
   - ANTR 350 Human Gross Anatomy & Structural Biol 3
   - CEM 351 Organic Chemistry I 3
   - ME 495 Tissue Mechanics 3
   - MSE 425 Biomat Mater and Biocompatibility 3
   - ZOL 341 Fundamental Genetics 4

2. Complete one of the following courses: (3)
   - MSE 454 Ceramics and Refractory Materials 3
   - MSE 465 Design and Application of Egr. Materials 3
   - MSE 476 Phys Metallurgy of Ferrous & Alumn Alloys 3

3. Technical Electives: (6)
   An approved list of Technical Electives is available from the adviser.

Manufacturing Engineering Concentration (18):
To gain interdisciplinary skills with business and design engineers for manufacturing projects and earn a Bachelor of Science degree in Materials Science and Engineering with a manufacturing engineering concentration, students must complete requirement 3. a. above and the following:

1. Complete all of the following: (9)
   - ECE 415 Computer Aided Manufacturing 3
   - ME 478 Product Development 3
   - MSE 465 Design and Application of Egr. Materials 3

2. Complete three of the following courses (9):
   - GBL 323 Introduction to Business Law 3
   - MSE 426 Introduction to Composite Materials 3
   - MSE 454 Ceramics and Refractory Materials 3
   - MSE 476 Phys Metallurgy of Ferrous and Alum Alloys 3
   - STT 471 Statistics for Quality and Productivity 3

Completion of this concentration fulfills requirement 2 of the admission requirements for the Master of Science degree in Manufacturing and Engineering Management offered by The Eli Broad College of Business.
Metallurgical Engineering Concentration: (18)
To enhance the student’s ability to characterize, process, and
design with metals in association with mechanical engineers
and earn a Bachelor of Science degree in Materials Science
and Engineering with a metallurgical engineering
concentration, students must complete requirement 3. a.
above and the following:

1. Complete all of the following: (12)
   - ME 423 Intermed Mechanics of Deformable Solids 3
   - ME 475 Computer Aided Design of Structures 3
   - MSE 465 Design and Application of Egr. Materials 3
   - MSE 476 Phys Metallurgy of Ferrous and Alum Alloys 3

2. Complete one of the following courses (3):
   - MSE 426 Introduction to Composite Materials 3
   - STT 471 Statistics for Quality and Productivity 3

3. Complete one of the following courses (3):
   - ME 425 Experimental Mechanics 3
   - MSE 451 Microscopic & Diffraction Anlys of Matls 3

Polymeric Engineering Concentration (18):
To gain interdisciplinary skills to facilitate interactions with
chemical engineers and earn a Bachelor of Science degree
in Materials Science and Engineering with a polymeric
engineering concentration, students must complete
requirement 3. a. above and the following:

1. Complete all of the following:
   - CEM 351 Organic Chemistry I 3
   - CHE 311 Fluid Flow and Heat Transfer 3
   - CHE 472 Composite Materials Processing 3
   - CHE 473 Chem Engr Pnclps in Polymrs & Matls Sys 3
   - MSE 426 Introduction to Composite Materials 3
   - STT 471 Statistics for Quality and Productivity 3

Other Electives (Variable)

Total Credits Required for Degree 128

The requirements listed above apply to students admitted to
the major of Materials Science and Engineering in the
Department of Chemical Engineering and Materials Science
(CHEMS) beginning Fall, 2008. The Department of
Chemical Engineering and Materials Science constantly
reviews program requirements and reserves the right to
make changes as necessary. Consequently, each student is
strongly encouraged to consult with his/her adviser to obtain
assistance in planning an appropriate schedule of courses.
Students who have questions about Materials Science and
Engineering should contact the Engineering Undergraduate
Studies Advising Office, 1415 Engineering Building, phone
(517) 355-6616, extension 1.

Some courses may have prerequisites, which are not
otherwise required in the program. Students should check
course descriptions to ensure they are aware of
prerequisites.

Last Revised June 2010
# Materials Science and Engineering

## Sample Program

### Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 151</td>
<td>4</td>
<td>CEM 152</td>
<td>3</td>
</tr>
<tr>
<td>CEM 161</td>
<td>1</td>
<td>EGR 102</td>
<td>2</td>
</tr>
<tr>
<td>EGR 100</td>
<td>2</td>
<td>Elective</td>
<td>1/2</td>
</tr>
<tr>
<td>ISS 2XX</td>
<td>4</td>
<td>MTH 133</td>
<td>4</td>
</tr>
<tr>
<td>MTH 132</td>
<td>3</td>
<td>WRA 1XX</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>Total</td>
<td>14/15</td>
</tr>
</tbody>
</table>

### Sophomore Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 221</td>
<td>3</td>
<td>Bioscience</td>
<td>3/4</td>
</tr>
<tr>
<td>ISS 3XX</td>
<td>4</td>
<td>ME 222</td>
<td>4</td>
</tr>
<tr>
<td>MSE 250</td>
<td>3</td>
<td>MSE 350</td>
<td>3</td>
</tr>
<tr>
<td>MTH 234</td>
<td>4</td>
<td>MTH 235</td>
<td>3</td>
</tr>
<tr>
<td>PHY 183</td>
<td>4</td>
<td>PHY 184</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>Total</td>
<td>17/18</td>
</tr>
</tbody>
</table>

### Junior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>3</td>
<td>ECE 345</td>
<td>3</td>
</tr>
<tr>
<td>IAH 20X</td>
<td>4</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>MSE 310</td>
<td>3</td>
<td>IAH 2XX</td>
<td>4</td>
</tr>
<tr>
<td>MSE 320</td>
<td>3</td>
<td>MSE 360</td>
<td>3</td>
</tr>
<tr>
<td>MSE 331</td>
<td>1</td>
<td>MSE 370</td>
<td>3</td>
</tr>
<tr>
<td>STT 351</td>
<td>3</td>
<td>MSE 381</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

### Senior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credits</th>
<th>Spring</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 454/465/476</td>
<td>3</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>MSE 454/465/476</td>
<td>3</td>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>MSE 477</td>
<td>3</td>
<td>Engr 400-lvl</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>MSE 466</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>STT 351</td>
<td>3</td>
<td>Total</td>
<td>15</td>
</tr>
<tr>
<td>STT 351</td>
<td>3</td>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

## Materials Science and Engineering Program Educational Objectives

Approved to replace the document adopted on 5/11/05

The MSE program prepares students to apply their understanding of the processing, application, and sustainable use of engineering materials essential to the realization of new ideas coming from engineers, scientists, enterprises, and society. Our overarching objectives are to equip graduates with the confidence that comes from professionalism, and provide them with the tools needed to contribute meaningfully within any of the diverse professional career paths they may choose. Since the discipline creates bridges between science and engineering, MSE majors must communicate effectively with people in many different specialties, and work effectively in multi-disciplinary teams. MSE graduates must be aware of the economic, social, and environmental implications entailed in the processing and use of materials, and must have a solid grounding in professional engineering ethics.

The faculty provide a rigorous academic environment so that graduates will have mastered the analytical and technical skills needed to successfully compete as professionals, entrepreneurs, or as postgraduate scholars.

### The MSE Program prepares our graduates to:

I. Achieve success in Materials Science & Engineering or another chosen career;
II. Advance to leadership roles within their profession and community;
III. Contribute effectively to their disciplines, economies and society;
IV. Compete with confidence for opportunities for postgraduate education;
V. Enjoy the benefits of a lifetime of learning and professional development.

Last revised May, 2008