Mechanical Engineering

University Requirements (23-24)
- Writing – American Thought and Language (ATL) 4
- Integrative Studies in Humanities (IAH) 8
- Integrative Studies in Social Sciences (ISS) 8
- Bioscience (one of the following):
 - BOT 105, BS 110, BS 111, ENT 205, MIC 205, MIC 301, PSL 250, ZOL 141 3-4

College Requirements (29)
- CEM 141 General Chemistry I 4
- CSE 131 Technical Computing 3
- MTH 132 Calculus I 3
- MTH 133 Calculus II 4
- MTH 234 Multivariable Calculus 4
- MTH 235 Differential Equations 3
- ^PHY 183 Physics for Scientists & Engineers I 4
- ^PHY 184 Physics for Scientists & Engineers II 4

Bachelor of Science Major Requirements (53)
- CEM 161 Chemistry Laboratory I 1
- ECE 345 Electronic Instrumentation & Systems 3
- ME 201 Thermodynamics 3
- ME 332 Fluid Mechanics 3
- ME 371 Mechanical Design I 3
- ME 391 Mechanical Engineering Analysis 3
- ME 410 Heat Transfer 3
- ME 412 Heat Transfer Lab 2
- ME 451 Control Systems 4
- ME 461 Mechanical Vibrations 4
- ME 471 Mechanical Design II 3
- ME 481 Mechanical Engineering Design Projects 3
- MSM 160 Engineering Graphics Communications 3
- MSM 205 Statics 3
- MSM 211 Mechanics of Deformable Solids 3
- MSM 250 Materials Science and Engineering 3
- MSM 306 Dynamics 3
- STT 351 Probability and Statistics for Engineering 3

Senior Electives (12)
- A minimum of 12 credits must be taken from the list below, including at least one Design-Intensive Course:
 - ME 422 Introduction to Combustion 3
 - ME 432 Intermediate Fluid Mechanics 3
 - ME 433 Intermediate Fluid Mechanics Lab 1
 - ME 444 Automotive Engines 3
 - ME 490 Independent Study in Mechanical Engr 1-3
 - ME 491 Selected Topics in Mechanical Engr 1-4

Design Intensive Courses:
- ME 414 Vehicle Thermal System Design 3
- ME 416 Comp Assisted Design of Thermal Sys 3
- ME 442 Turbomachinery 3
- ME 445 Automotive Powertrain Design 3
- ME 475 Comp Aided Design of Auto. Structures 3

Additional Senior Elective choices can be found in the ME Bulletin which is the undergraduate newsletter for Mechanical Engineering majors.

Other Electives (Variable)

Total Credits Required for Degree

128

The requirements listed above apply to students admitted to the major of Mechanical Engineering in the Department of Mechanical Engineering beginning Spring, 1994. The department of Mechanical Engineering (ME) constantly reviews program requirements and reserves the right to make changes as necessary. Consequently, each student is strongly encouraged to consult with his/her advisor to obtain assistance in planning an appropriate schedule of courses. Students who have questions about Mechanical Engineering should contact the Mechanical Engineering Department Advising Office, 2560 Engineering Building, phone (517) 355-3338.

Some courses may have prerequisites, which are not otherwise required in the program. Students should check course descriptions to ensure they are aware of prerequisites.

1 If PHY 231 is taken in place of PHY 183, PHY 233B must also be completed. If PHY 232 is taken in place of PHY 184, PHY 234B must also be completed.
Michigan State University College of
Engineering
Undergraduate Studies

1410 Engineering Building
East Lansing, MI 48824
(517) 355-5128

http://www.egr.msu.edu/egr/programs/bachelors/degreeprograms.php

Mechanical Engineering
Sample Program

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Sophomore Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Credits</td>
<td>Fall Credits</td>
</tr>
<tr>
<td>Spring Credits</td>
<td>Spring Credits</td>
</tr>
<tr>
<td>Bioskience (AT)</td>
<td>CSE 131</td>
</tr>
<tr>
<td>3 / 4</td>
<td>1XX 4</td>
</tr>
<tr>
<td>CEM 141</td>
<td>Elective 3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>CEM 161</td>
<td>MSM 160</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ISS 2XX</td>
<td>PHY 183</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MTH 132</td>
<td>3</td>
</tr>
<tr>
<td>Total 15/16</td>
<td>Total 15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Senior Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Credits</td>
<td>Fall Credits</td>
</tr>
<tr>
<td>Spring Credits</td>
<td>Spring Credits</td>
</tr>
<tr>
<td>Elective 3</td>
<td>ME 410</td>
</tr>
<tr>
<td>ECE 345</td>
<td>ME 412</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ISS 3XX</td>
<td>ME 451</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Elective 2</td>
<td>ME 471</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ME 391</td>
<td>ME 481</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MSM 306</td>
<td>Senior Elec</td>
</tr>
<tr>
<td>3</td>
<td>Senior Elec</td>
</tr>
<tr>
<td>STT 351</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total 16</td>
<td>Total 17</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Program Objectives

The undergraduate program in mechanical engineering must ensure that our graduates are very well prepared to enter into and continue progressing in the mechanical engineering profession. To achieve these goals, the program must provide a sufficiently broad and deep base of mathematics; physical science; engineering science; and computer, laboratory, design, and communication experience. The program must also provide breadth, depth, and a balanced view of the engineering principles in both the thermal/fluids area and the mechanical systems area, including the design and realization of such systems. In addition, the program must demonstrate the ability of graduates to apply multivariate calculus, statistics, differential equations, and linear algebra to the solution of mechanical engineering problems. Graduates must be prepared for entry into the engineering profession through a major design experience based on the knowledge and skills acquired in earlier course work. This experience should incorporate engineering standards and realistic constraints that include most of the following considerations: economic, sustainability, manufacturability, health and safety, social, ethical, and environmental.

In summary the program must integrate knowledge and skills acquired in a diverse set of courses to achieve the following abilities in its graduates:

(a) An ability to apply knowledge of mathematics, science and engineering
(b) An ability to function on multi-disciplinary teams
(c) An ability to identify, formulate, and solve engineering problems
(d) An ability to communicate effectively
(e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
(f) An ability to design a system, component, or process to meet desired needs
(g) An ability to design and conduct experiments, as well as to analyze and interpret data

Additionally, through the culture of the program and the attitude of the faculty the program must achieve the following abilities in its graduates:

(h) An understanding of professional and ethical responsibility
(i) A recognition of the need for, and an ability to engage in life-long learning
(j) An understanding of the impact of engineering solutions in a global/societal context as provided by a broad education
(k) A knowledge of contemporary issues