LS-INGRID: A Pre-Processor And Three-Dimensional Mesh Generator For The Programs LS-DYNA, LS-NIKE3D And TOPAZ3D

Version 3.5

Livermore Software Technology Corporation
2876 Waverley Way
Livermore, CA 94550

August 1998
Mailing Address:
Livermore Software Technology Coporation2876 Waverley WayLivermore, California 94550-1740
Support Address:
Livermore Software Technology Corporation
97 Rickenbacker Circle
Livermore, California 94550-7612

FAX: 510-449-2507
TEL: 510-449-2500
EMAIL: sales@1stc.com
Copyright © 1989-1998 by Livermore Software Technology Corporation
All Rights Reserved

Table of Contents

ABSTRACT I. 1
PREFACE I. 1

1. LS-INGRID BASICS 1.1
1.1 The Parser 1.1
1.2 Command File Format 1.2
1.3 The Calculator 1.2
1.4 Built in Variables 1.3
1.5 Basic Arithmetic Options 1.4
1.6 Logical Operations 1.4
1.7 Functions 1.4
1.8 Options 1.5
1.9 Directives 1.6
2. Control Commands. 2.1
3. IDEAS Part 3.1
3.1 Options and Functions 3.1
4. PATRAN Part 4.1
4.1 Options and Functions 4.1
5. NASTRAN Part 5.1
5.1 Options and Functions 5.1
6. Standard Part 6.1
6.1 DEFINITIONS 6.1
6.2 Index Progression 6.10
6.3 Part Commands and Functions 6.11
7. Beam Part 7.1
7.1 Options and Functions 7.3
8. Old Data Part 8.1
8.1 Options and Functions 8.5
9. MAZE Part 9.1
9.1 Required Part Data 9.1
9.2 Options and Functions 9.3
9.3 Functions 9.5
10. EDIT Part. 10.1
10.1 Options and Functions 10.1
11. DYNA3D Part 11.1
11.1 Options and Functions 11.1
12. Loads and Boundary Conditions 12.1
13. Interactive Commands 13.1
13.1 Exploded View Commands 13.10
13.2 TAURUS/Post-Processing Commands 13.11
14. Two-Dimensional Line Definitions 14.1
15. Three-Dimensional Line Definitions 15.1
16. Surface Definitions 16.1
17. Volume Definitions 17.1
18. Coordinate Transformations 18.1
19. LS-DYNA2D Commands and Materials 19.1
19.1 LS-DYNA2D Material Input 19.4
19.2 General Material Options 19.4
20. LS-DYNA3D Commands and Materials 20.1
20.1 LS-DYNA3D Material Input 20.13
20.2 General Material Options 20.13
21. Equations-of-State 21.1
22. LS-NIKE2D Commands and Materials 22.1
22.1 LS-NIKE2D Material Input 22.4
23. LS-NIKE3D Commands and Materials 23.1
23.1 LS-NIKE3D Material Input 23.4
24. TOPAZ Commands and Materials 24.1
24.1 TOPAZ Material Input 24.3
ACKNOWLEDGMENTS ACK. 1
REFERENCES REF. 1

LS-INGRID: A Pre-Processor and Three Dimensional Mesh Generator for the Programs LS-DYNA, LS-NIKE3D and TOPAZ3D.

Abstract

LS-INGRID is a general purpose pre-processor for the programs, LS-NIKE2D[1], LS-NIKE3D[2], LS-DYNA2D[3], LS-DYNA3D[4], TOPAZ2D[5] and TOPAZ3D[6]. It can be used as a simple translator to convert various databases to these programs. In addition, it is a general purpose three-dimensional mesh generator with considerable capability to deal with complex geometries and allows for parametric geometric modeling.

PREFACE

LS-INGRID is an alternative mesh generator for finite element modeling which is principally intended as "research" program or one that focuses on various capabilities and techniques which are not addressed by commercial mesh generators. As a general purpose mesh generator, the capabilities are fairly complete with a wide range of geometric capabilities. An extensive parametric modeling capability is also support. LS-INGRID is most effective in combination with NIKExx and DYNAxx. A considerable amount of effort has gone into making LS-INGRID support virtually every feature of these programs (an almost impossible task given the rate that LS-DYNA3D improves). Although the usage of LS-INGRID can seem somewhat combersome relative to more traditional mesh generation schemes, the productivity of users performing parametric modeling tasks with LS-INGRID can much higher in some cases.

Unlike most general purpose mesh generators, LS-INGRID was developed by the Author for the sole purpose of aiding them in their routine analysis tasks. The original code was developed to assist in the preparation of SAP5 models at the University of Tennessee beginning in 1978. The 1978 program was loosely based on index space ideas obtained from the INGEN[7] program which was developed at Los Alamost National Laboratory. In 1981, the author moved to Lawrence Livermore National Laboratory. INGRID developments continued at LLNL on the side because LLNL was committed to the development of MAZE3D, but did not have any supported three-dimensional mesh generator. In 1985, the MAZE3D effort was finally abandoned and INGRID became the principal mesh generator of LLNL by default. At this time, the program was merged with the MAZE[8] program to produce a version similar to the current LS-INGRID.

After 1985, development work continued at SPARTA with a steady evolution and the
addition of the parametric modeling capabilities. LS-INGRID is the latest version supported by LSTC. Development on LS-INGRID is continuing in the directions which proved most popular in the past. The emphasis will continue to be providing a general purpose capability focused on NIKExx and DYNAxx with much work being done to support advanced modeling capabilities which are not found in any other program.

1. LS-INGRID BASICS

The LS-INGRID input file is an ASCII datafile which contains a complete description of the analysis. The commands are input using a parser which is simple and efficient, but also has a considerable amount of flexibility for dealing with complex situation.

1.1 The Parser

The parser basically takes a stream of blank delimited character strings and number and decodes them for the program. The character strings are for commands or parameters and are arbitrary in length. Normally, only the first four characters are significant. Deviations from this rule are described in the documentation. Numbers can be input in a variety of formats ranging from simple integers to floating point numbers specified with an " E " format. If an error is detected in the decoding of a number, the user will be notified.

All character input for commands or numbers is automatically converted to lower case for processing. Thus case selection can be performed strictly for the purpose of enhancing readability. Any number of commands and numbers can be placed on a single line of input with the only constraint being the 80 character input line limit. In the commands description, upper case characters or characters enclosed within quotes are commands which are to be typed exactly as lower (ignoring case). Lower case items represent variables which require input.

Comments may be included by using a " c " anywhere in the input followed by a blank and the comment. If the comment does not begin in column 1, then the " c " must be preceded by a blank. Blocks of input lines can be commented by preceding the block with the character " $\{$ " and ending it with " $\}$ ".

Although items are normally blank delimited, commas can also be used to separate items. Two commas which are separated by blanks are treated as having the number 0 between them. Lists of numbers or character strings are input and terminated normally by a ";". This ";" does not necessarily need a blank between it and the last item. If the list is a list of numbers, then the list can be terminated by simply beginning the next command and eliminating the semicolon.

A function calculator is also built into the parser to permit advanced programming techniques to be used. This calculator is invoked by placing the calculator command within two square brackets. If the parser is expecting a character string, then the function will be processed without any other effect on the command stream. If a number is expected, then the calculator will send whatever value it calculates to the program. See Section 1.3 for a detailed description of the calculator functions.

1.2 Command File Format

The LS-INGRID input file "ingridi" has a relatively free flowing input format with few restrictions, some of which are:

- Define an item before using it; e.g. a line definition must occur before applying it to a part.
- Materials data and code execution options cannot be input until a code output option has been selected.
- Some commands have order dependent effects, e.g. rotating local coordinate systems successively about different axes.
- Many items which have names in LS-INGRID are assigned numbers for the analysis program. These numbers are assigned sequentially starting from one based on the order of first occurrence of names.

The form of ingridi is as follows:

$$
\text { Title line } \quad \text { (format is 80al) }
$$

Control commands (Section 2)
Part definition (Section 3-8)
Control commands
Part definition

END

1.3 The Calculator

The calculator is used to insert expressions into LS-INGRID input descriptions and is particularly useful for developing parametric models. When used in conjunction with the "include" command, it is possible to write programs for individual parts which can then be assembled into larger models. The calculator capabilities are invoked by inserting an expression anywhere in the input between two square brackets (e.g. [$5 * \sin (30)]$). If at that point in the input, LS-INGRID is expecting an integer or a floating point number, then the expression is evaluated and the results passed to LS-INGRID as either the nearest integer or floating point number. If a character string is expected, then the expression is evaluated and skipped over as if it were just a comment.

Within the calculator variables may be created and they will remain in effect until the program completes. Thus the expression [length=5*5] would store 25.0 into a variable named "length" and return 25.0 to LS-INGRID if a number is expected. This variable could be recalled later by [length].

Separate from the variable capability is a function capability. The function capability stores an expression which may consist of variables and other functions into a particular name for future evaluations. An example follows:

$[a=1][b=2][c=1]$	Set some variables so this won't evaluate improperly.
$\left[\operatorname{def} \operatorname{root} 1(a, b, c)=\left(-b+\operatorname{sqrt}\left(b^{*} b-4^{*} a^{*} c\right)\right) / 2 * a\right]$	Define the function.
$[\operatorname{root} 1(2,1,0)]$	Evaluate the function.

The general form of the calculator's capabilities is as follows:

$$
\text { [option name }=\text { expression] }
$$

Following is a summary of the calculator capabilities:

1.4 Built in Variables

Variable	Value
pi	p
e	e
nnode	Result of last operation The current node number is set to nnode when outside of a part. Until the first part is complete, nnode is zero.
nbeam	The current beam element number is set to nbeam outside of a part. Until the first part is complete, nbeam is zero.
nbrick	The current brick element number is set to nbrick outside of a part. Until the first part is complete, nbrick is zero. nbrick includes both regular bricks and 8-node shell elements.
nshell	The current shell element number is set to nshell outside of a part. Until the first part is complete, nshell is zero.
npart	This variable is set inside parts and is set to the current part number.

1.5 BASIC ARITHMETIC OPTIONS

Operator	Purpose	Example
+	Addition	$3+4$
-	Subtraction	$4-1$
$*$	Multiplication	$5.5^{*} 7.6$
$/$	Division	$7.5 / l$ length
\wedge	Exponentiation	$10^{\wedge} 3$
$\%$	Modulo arithmetic	$5 \% 2$

1.6 LOGICAL OPERATIONS

The result of a logical operator is 1.0 if true and 0.0 if false. These may be used either as expressions or as part of "if-then-else-endif" constructs.

Function	Purpose	
$==$	Equal to	
$!=$	Not equal to	
$<$	Less than	
$<=$	Less than or equal to	
$>$	Greater than	
$>=$	Greater than or equal to	
$\& \&$	Logical and	
$\\|$	Logical or	
$!$	Negation	

1.7 FUNCTIONS

The angles in the following trigonometric functions are all in radians by default. This can be controlled by the "deg" and "rad" options listed in the "options" section below.
Function Purpose

$\sin ($ angle $)$	Trigonometric sine.
$\cos ($ angle $)$	Trigonometric cosine.
$\tan ($ angle $)$	Trigonometric tangent.
$\operatorname{asin}(x)$	Inverse trigonometric sine.
$\operatorname{acos}(x)$	Inverse of trigonometric cosine.
$\operatorname{atan}(x)$	Inverse of trigonometric tangent.
$\operatorname{atan} 2(y, x)$	Two argument inverse tangent.
$\sinh (x)$	Hyperbolic sine.
$\cosh (x)$	Hyperbolic cosine.
$\tanh (x)$	Hyperbolic tangent.
$\exp (x)$	Exponential.

$\ln (x)$	Natural logarithm.
$\ln 2(x)$	Logarithm base 2.
$\log (x)$	Logarithm base 10.
$\min \left(x_{1}, x_{2}, \ldots\right)$	Minimum of arbitrary number of parameters.
$\max \left(x_{1}, x_{2}, \ldots\right)$	Maximum of arbitrary number of parameters.
$\operatorname{gcd}\left(x_{1}, x_{2}, \ldots\right)$	Greatest common denominator.
$\operatorname{lcm}\left(x_{1}, x_{2}, \ldots\right)$ Least common multiple.	
asa(angle,side,angle $)$	Evaluate the triangle and return largest angle.
ass(angle,side,side	Evaluate the triangle and return largest angle.
sas(side,angle,side $)$	Evaluate the triangle and return largest angle.
sss(side,side,side $)$	Evaluate the triangle and return largest angle.
rnd	Return a random number.
$\operatorname{lnd} 2$	Return a random number but do not update the seed.

1.8 OPtIONS

Function	Purpose
help	Print the help message.
help subject	Print help for any of the calculator functions or options.
def name=expression	Define a function "name". Any time name is encountered in future expressions, it will be recursively evaluated.
save filename	Save all variables to file "filename".
load filename	Load variables from file "filename".
quit	Exit calculator (this will shut down LS-INGRID).
rad	All angles for trigonometric functions are assumed to be defined in radians (default).
deg	All angles for trigonometric functions are assumed to be defined in degrees.
list	List current active variables.
flist	List current definitions of functions.
$\operatorname{root}\left(c_{n}, \ldots, c_{1}, c_{0}\right)$	Determine the roots of the nth degree polynomial with coefficients c_{0} through c_{n}.
factor (x)	Factor x into prime coefficients.
$\operatorname{integral}\left(e_{1}, e_{2}, f, v\right)$	Determine the integral of the function f with respect to the variable v. The limits are from e_{1} to e_{2} which may
degree n	be expressions. A Romberg integration rule is used. The degree of Romberg integration for the "integral" command is n (default=4). Simpson's rule corresponds to $n=1$ and the trapezoidal rule is $n=0$.
solve $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ for $\left(x_{1}=v_{1}+d_{1}, \ldots x_{n}=v_{n}+d_{n}\right)$	
	Solve a system of nonlinear equations. The equations are previously defined functions, f_{1} through f_{n}.
	Variables x_{1} through x_{n} must be listed and the
	calculator will attempt to determine them. Optional inputs include v_{i} and d_{i}. The initial starting guess is v_{i} and the initial increments for iterations are d_{i}.

maxits n
tol t
display

Set the maximum number of iterations for the "solve" command to n (default=30).
Set the convergence tolerance for the "solve" command to t (default=1e-6).
The display command is a brute force method for improving results of a divergent solve command.
Results are displayed after every iteration.
if expr1 then expr2 else expr3 endif
If expression 1 is true than evaluate expression 2.
Otherwise, evaluate expression 3.

1.9 DIRECTIVES

LS-INGRID provides directives to control the flow of logic in command file descriptions. Directives begin in the first column of a line and no other commands are allowed on the same line as the directive. This capability is patterned similar to the preprocessor used in the C -programming language.

Directive

\#ELSE

\#ELSEIF expression

\#ENDIF

\#ENDMACRO
\#IF expression
\#INCLUDE name
\#MACRO name
\#RETURN

Function

This is for \#IF - \#ELSE - \#ENDIF constructs.
Perform conditional execution of the following input lines as part of an \#IF - \#ELSEIF \#ENDIF construct.The results of expression should be either true (1) or false (0).

This signifies the end of an \#IF - \#ENDIF block.
End definition of macro initiated by \#MACRO.
Conditionally execute the following lines of input. The results of expression should be either true (1) or false (0).

Begin execution of commands in file name. When a \#RETURN or an end-of-file is encountered, control is returned to the original file.

Begin definition of macro name. The definition ends when an \#ENDMACRO is encountered.

Cease reading input from the current input file and return control back to the next higher level file. See also \#INCLUDE.

2. Control Commands

Control commands are optional and can be input in any order. They must not be placed inside a part. The following control commands are available:

ARRI $l c$

Options:

Generate arrival times for pressure surfaces associated with load curve $l c$. Arrival times are generated by assuming that the loads are caused by a wave. This wave starts from a threedimensional point, line, or surface and travels with a velocity. The arrival time is the time required for the wave to travel from the source to an individual pressure segment.

Pressure cannot exceed p.
Pressure cannot be less than p. (This option is selected with $p=0.0$ when "COSI" is executed). The pressure varies as a function of the angle between the pressure segments normal and the direction of the wave from the source.
The pressure wave decays as a function of the distance from the source. The distance at which the scale factor for the input pressure equals 1.0 is d. The type of decay is specified by type.
type $=$ " R ": relationship is $1.0 / R$
$=$ " $R 2$ ": relationship is $1.0 / R^{2}$
$=$ " $R 3$ ": relationship is $1.0 / R^{3}$
= "CONSTANT": no decay
$=$ "EXP": relationship is $1.0 / R^{a}$
The source is a line. $\left(p_{x} p_{y}, p_{z}\right)$ is any point on the line and $\left(v_{x}, v_{y}, v_{z}\right)$ is any vector along the line.
The source is a plane. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the plane and $\left(v_{x}, v_{y}, v_{z}\right)$ is any vector normal to the plane.
The source is a point located at $\left(p_{x} p_{y}, p_{z}\right)$.
Add $d t$ to the arrival time.
The wave travels with velocity vel.
Terminate this command.

LS-INGRID is to operate in batch mode. The interactive commands are placed at the end of the LS-INGRID model description so that they can be read automatically. A graphics device will still be requested since one of the batch output devices may be desired. If no graphics are needed use the NOPL command.

BELT

This section defines the properties of seat belt systems, but possibly has other applications. The seat belt capability is supported in LS-920 and later. A detailed description is included in the LS-920 manual.

SLIPRING name
Define a slipring.
Slip rings provide for a contiuous feeding of material through a pully. One node for the slip ring is fixed to a support structure. The slip ring logic works with seatbelt elements. Two seatbelt elements must also be identified which touch the slip ring. The friction coefficient, f , determines the resisting force to the belt being pulled through the slipring.

FRIC f Friction coefficient for material sliding through the slip ring.
;
End of slipring definition.
RETRACTOR name
Define a retractor.
Retractor elements simulate the normal function of retrator systems for seat belts within an automobile.

DELAY $d t$
FEDL feed_length
LCL lcl
LCU lcu
PULL pullout
SENSOR name
;

Time delay for retractor operation.
Load curve for loading.
Load curve for unloading.
Amount of pull-out between time delay ending and retractor locking.
Sensor for trigering retractor. At least one must be specified and no more than four.
End of retractor definition.

PRETENSIONER name
Define pretensioner.
During an automobile accident, pretensioners are frequently employed to automatically increase the tension on a seatbelt. Both pyrotechnic and spring type systems are supported. Usually, a sensor triggers the event.

PYROTECHNIC
LCP lcp
RETR name
TIME t

Use a pyrotechnic pretensioner.
Load curve for pretensioner.
Retractor name effected.
Time between sensor triggering and pretensioner acting.

PRELOAD
DELAY $d t$
SPRING ispd

LOCK

DELAY $d t$
SPRING ispd
DISTANCE
SENSOR name
;

SENSOR name

The pretensioner consists of a preloaded spring. Time between sensor triggering and pretensioner acting.
Spring element number.
The pretensioner consists of a lock spring which is removed.
Time between sensor triggering and pretensioner acting.
Spring element number.
The distance between nodes is locked.
Pretensioner is activated by one to four sensors.
End of pretensioner definition.
Define sensor.

A variety of sensor systems are incorporated into automobiles to sense the onset of a crash. The accelerometers are simply used for saving output to an ASCII file. The other sensors are used to initiate the retractors and pretensioners.

ACCE a X
Y
Z
TIME $d t$

RETR
RETR name
RATE r
TIME t

TIME t
DIST
DMAX $d_{\text {max }}$
DMIN $d_{\text {min }}$
;
;
CNV n

The sensor is an accelerometer.
The acceleration is measured in the x-direction.
The acceleration is measured in the y-direction.
The acceleration is measured in the z-direction.
The sensor is triggered if a is exceeded for duration $d t$.

The sensor triggers based on the retractor pullout rate.
Retractor name.
Pullout rate.
Time over which rate of pull-out must be exceeded.

The sensor triggers after time t.
The sensor triggers based on the distance between two nodes.
Maximum distance.
Minimum distance.
End of Sensor definition.
End of BELT command.
Define control volume n. (MVMA/DYNA3D, LS-910 and later.)

Options:

DAMP d
MATE $m_{1} \ldots m_{n}$;

PSCA psca

REVERSE
TYPE m
VINI vini
VSCA vsca

Set airbag damping constant to d. The airbag consists of material subset $m_{1} \ldots$ m_{n}.
Pressure scale factor used for converting pressures calculated by the thermodynamic control volume to pressures which will be applied to the finite element model. (default=1.0)
Reverse normals.
Control volume is of type m. Input for type m control volume begins immediately.
Initial filled volume. $($ default $=0.0)$
Scale factor for converting calculated volume to volume used for thermodynamic calculations. (default =1.0)

Type 1:
The pressure-volume relationship is of the form:
Pressure $=p_{0} * s /$ Relative volume

P0 p_{0}	Initial pressure.
SCAL s	Scale factor.
$;$	Terminate control volume input.

Type 3:
The pressure-volume relationship is of the form:

$$
\text { míout }=A \sqrt{2 p \rho \mu} \sqrt{\frac{\gamma}{\gamma-1}\left(Q^{2 / \gamma}-Q^{(\gamma+1} / \gamma\right)}
$$

where

$$
\begin{aligned}
& \mathrm{Q}=\backslash \mathrm{f}\left(\mathrm{p}_{\mathrm{e}}, \mathrm{p}\right) \\
& \gamma=\backslash \mathrm{f}\left(\mathrm{c}_{\mathrm{p}}, \mathrm{c}_{\mathrm{V}}\right) \\
& \mathrm{p}=\backslash \mathrm{f}((\gamma-1) \mathrm{E}, \mathrm{~V})
\end{aligned}
$$

Options:

$\mathbf{C V} c_{v}$
CP c_{p}
TIN t
LCM lcm
MU m

Heat capacity at constant volume.
Heat capacity at constant pressure.
Input gas temperature.
Load curve defining input mass flow rate.
Shape factor for exit area. If m is negative, then $|\mathrm{m}|$ is the number of a load curve which defines the shape factor as a function of pressure.

A a

PE p_{e}
RHO r
GRAV g
;

Exit Area. If a is less than zero, then $|a|$ is the number of a load curve which defines the area as a function of pressure.
Ambient pressure.
Ambient density.
Gravitational constant. If the ambient density is defined in units of weight per volume, then the actual gravitational constant must be used.
Otherwise, g is set to 1 .
Terminate control volume input.

Type 4:

Type 4 applies a constant internal pressure scaled by s until a point in time. A load curve is used to cause a change in behavior at some point in time. When the change occurs, the volume of the control volume is first calculated and used to initialize an adiabatic gas relationship.

PINT $p_{\text {int }}$	Interior pressure.
LC $l c$	Load curve.
SCAL s	Scale factor for pressure.
PE p_{e}	Ambient pressure.
RHO r	Density of gas when initialized.
GAMM g	Ratio of specific heats.
$;$	Terminate control volume input.

Type 5:

Type 5 is an implementation of the Wang-Nefske airbag model.

CV c_{v}	Heat capacity at constant volume.
$\mathbf{C P} c_{p}$	Heat capacity at constant pressure.
TIN t	Input gas temperature.
LCM lcm	Load curve defining input mass flow rate.
$\mathbf{C 2 3} c 23$	Shape factor for exit hole.
$\mathbf{A 2 3} a 23$	Exit hole area.
$\mathbf{C P 2 3} c 23 \phi$	Shape factor for exit porisity.
AP23 $a 23 \phi$	Exit hole porosity.
PEXT p_{e}	Ambient pressure.
RHO r	Ambient density.
GRAV g	Gravitational constant.
VOLT v	Optional tank volume.
LCOUT $l c$	Optional load curve specifying exit flow as a
PINI p_{0}	function of pressure.
PPOP ppop	Optional initial overpressure (gauge).
	Optional pressure where a plug is assumed to
;	pop and venting begins.
	Terminate control volume input.

COOR nc data
Input nc global coordinate systems. Global coordinate systems remain in effect until reset using this command. Coordinate system data is
described in detail in the section on Coordinate Transformations.

CSCA s
CSYM
Options:
$\operatorname{AXIS} p_{x} p_{y} p_{z}$
;
DEFAULT dir

DETP mat

Options:

$\mathbf{L N P T} p_{x} p_{y} p_{z} q_{x} q_{y} q_{z} n$
 POINT $p_{x} p_{y} p_{z}$
 TIME t
 ;

DN2D $i j$

DN3D

DS n

Scale all nodal coordinates by s.
Define cyclic symmetry interface.

The vector which orients the axis for rotational cyclic symmetry is $\left(p_{x}, p_{y}, p_{z}\right)$.

Terminate the CSYM command.
The default directory for finding include files is dir. Currently, this is only supported on CONVEX computers.

Define detonation point for material mat. If mat is zero then all materials are detonated.

Generate n equals spaced detonation points on the line from $\left(p_{x}, p_{y}, p_{z}\right)$ to $\left(q_{x}, q_{y}, q_{z}\right)$.

Detonate the point $\left(p_{x}, p_{y}, p_{z}\right)$.
Lighting time for detonation point.
Terminate this command.
Output generated is compatible with LSDYNA2D i and j flags specifying which 3-D coordinates correspond to the LS-DYNA2D r and z coordinates. i and j can have values " x ", " y ", or " z ". This activates additional commands which are described in LS-DYNA2D Options and Materials.

Output is generated for LS-DYNA3D. This activates additional control commands which are described in LS-DYNA3D Options and Materials.

Input digitized 3-D surface number n. Digitized surfaces consist of a surface defined by triangles. This is not smooth for coarse meshes; however, 10,000 and more triangles are common in defining surfaces to achieve
reasonably accurate definitions. This command consist of "DS n " optionally followed by a coordinate transformation and then one of the digitized surface types is input to complete the command.

Option:

MOVE data

Type 1: GRID $n_{i} n_{j}$

Type 2: FEM $m n$
$x_{1} y_{1} z_{1} x_{2} y_{2} z_{2} \ldots$ $i_{1} j_{1} k_{1} l_{1} i_{2} j_{2} k_{2} l_{2} \ldots$

Type 3: CONT ncont

Move the surface definition by data. data is described in the section on Coordinate Transformations.

The surface is defined by a logically regular set of points in three dimensions. $n_{i}{ }^{*} n_{j}$ points must be input in the following order. $x_{11} y_{11} z_{11} \ldots x_{i 1}$
$y_{i 1}$
$z_{i 1} \ldots x_{i j} y_{i j} z_{i j}$.
The surface is a grid of finite element quadrilaterals. It has m nodes and n elements.

Input m nodal points.
Input n four node elements.
The surface is defined by ncont contours that each have an arbitrary number of points.

Options:

XLE x
YLE y
ZLE z
CHORD scal
FNU n_{u} FNL n_{1}

XF x_{f}
YF y_{f}
ZF z_{f}
L3D l

L3E \ln
;
Data:
n
$x_{1} y_{1} z_{1} \ldots x_{n} y_{n} z_{n}$
X-coordinate of leading edge.
Y-coordinate of leading edge.
Z-coordinate of leading edge.
Scale factor for the chord length.
The contour is defined by n_{u} points on the upper surface followed by n_{1} points on the lower surface.
Contour points are in the plane $X=x_{f}$.
Contour points are in the plane $Y=y_{f}$.
Contour points are in the plane $Z=z f$.
Use three-dimensional line definition l. The number of points on the contour is the number of points used to define the line definition. Use three-dimensional line definition l with n equal spaced points.
Terminate option and read required data.
Skip this section if L3D or L3E is requested. Number of points on contour. (Input only if $n u=n 1=0$).
Contour coordinates. If $X F$ was used, do not input any X coordinates, and similarly for $Y F$ and $Z F$.

Type 4: FUNC $n_{s} n_{t} x y z$

Type 5: PROJ m offset

Define a parametric surface using parameters s and t. The number of points for making a grid in the s direction is $n s$ and the number of points in the t direction is $n t$. s and t are assumed to range from 0 to $1 . x, y$ and z are input as functions of s and t.

The current digitized surface is formed by taking digitized surface m and projecting m a distance "offset" in the normal direction.

Digitized surface m is symmetric about $X=x s y m$. This forces normal components of points within xtol of the symmetry plane to be in the $Y-Z$ plane only.

Digitized surface m is symmetric about $Y=y s y m$. This forces normal components of points within ytol of the symmetry plane to be in the $X-Z$ plane only.

Digitized surface m is symmetric about $Z=z s y m$. This forces normal components of points within ztol of the symmetry plane to be in the $X-Y$ plane only.

End digitized surface definition.
Terminate the model description.
Define fold plane number n. Fold planes are used later in the interactive phase to generate folded models of meshes such as airbags. The nine parameters have the following meanings:
$v_{1}=x$ or y position of fold relative to the unfolded mesh.
$v_{2}=x$ or y position of fold relative to the folded mesh.
$v_{3}=$ postive $/$ negative fold flag. If $v_{3}=+1$, then the folded portion lies along the positive coordinate. If $v_{3}=-1$, then the folded portion lies along the negative coordinate.
$v_{4}=$ fold thickness desired.
$v_{5}=\mathrm{Up} /$ down flag. If $v_{5}=+1$, then the material is folded onto the top of the mesh. If $v_{5}=-1$, then the material is folded under the mesh.
$v_{6}=$ Direction. The fold plane is normal to the X-axis if $v_{6}=0$ and normal to the Y-axis if $v_{6}=1$.
$v_{7}=$ Fold logic flag. The thin fold logic is used if $v_{7}=0$ and the thick fold logic is used if $v_{7}=1$.
$v_{8}=$ Scale factor. This can be used to scale the normal thickness offsets at the fold point. This will increase the separation between layers, but possibly cause unacceptable mesh distortion.
$v_{9}=$ Fold radius. This will take precedence over the internally computed fold radius.

See also FOLD and PFOLD under Interactive Commands.

FIGN f expr

FLEX name

Options:

CARDAN
FLEXION
LC1 lc1
LC2 lc2
LC3 lc3
LC4 lc4
LC5 1c5
LC6 lc6
MATM m
MATS m
MSYS s

When performing fold definition f, ignore nodes with undeformed coordinates that result in expr being true. (e.g. fign $6[y<=0]$).

Begin definition of flexure-torsion or cardan joints (LS-920 and later.)

This joint is a cardan joint.
This joint is a flexion-torsion joint.
First torque-twist load curve.
Second torque-twist load curve.
Third torque-twist load curve.
Fourth torque-twist load curve.
Fifth torque-twist load curve.
Sixth torque-twist load curve.
Define master material.
Define slave material.
Define master side local system.

PHIF s
PHIS s
PSIF s
PSIS s
SSYS s

STOPA- s

STOPA+ s

STOPB- s
STOPB+ s
STOPC- s
STOPC+ s
THEF s
THES s

FMOV f data

FOPT foptions

Options:

L3D
ANGLE日
SCALE scale
;
FSYM $m x y z n_{x} n_{y} n_{z} s_{f}$

GEOC igeo mat

First angle friction.
First angle stiffness.
Third angle friction.
Third angle stiffness.
Define slave side local system.
Negative stop for first angle.
Positive stop for first angle.
Negative stop for second angle.
Positive stop for second angle.
Negative stop for third angle.
Positive stop for third angle.
Second angle friction.
Second angle stiffness.
After performing fold definition f, affected nodes are moved by the transformation described in data (see Coordinate Transformations).

Input additional parameters for airbag folding.

Fold abour 3-D line denfinition ldnum.
Fold the material θ degrees.
The folded section will become thicker by the factor scale.

End of FOPT command.
Define failing symmetry plane m. (x, y, z) is any point on the plane and $\left(n_{x}, n_{y}, n_{z}\right)$ is any normal vector. Solid element faces are slaved to the symmetry plane and failure occurs when the normal stress exceeds s_{f}.

Geometric contact entity definition. A geometric contact entity is an analytical surface type which can be attached to a rigid body of later.)

Options:

COUPLE type n

FRIC f
INSIDE
MATE $m_{1} \ldots m_{n}$;

MOVE n
OUTSIDE
PNLT p
QUAD q

SD n
;

GMI n

INCLUDE fname

JD j

Options:

The contact is between a CAL3D/MADYMO coupled rigid body and a deformable body. The rigid body type is either "ELLIPSE" or "PLANE" and n is the number of the shape in either CAL3D or MADYMO.
Set friction coefficient to f.
The slaved mesh is the material subset $m_{1} \ldots$
m_{n}.
Move the entity using the global transformation number n.

Penalty p.
Quadrature rule.
$\mathrm{q}=0$: Nodes only.
$\mathrm{q}=1$: Element centers.
$\mathrm{q}=2: 2 « 2$ quadrature on segments.
Use surface definition n. Valid surface types include planes, ellipsoids and spheres.
Terminate this command.
Increment the default material number by n for each global copy of a part. This number is initially set to zero.

Include the information in file fname in the command stream. The INCLUDE command can perform to 20 levels deep.

Begin joint definition for joint j. Diagrams of the types of joints are shown in Figure 2-1. Nodes are assigned to joint definitions within parts.

Spherical joint.
Revolute joint.
Cylindrical joint.
Planar joint.
Universal joint.
Translational joint.
Joint penalty.
This joint is a simple nodal constraint. The common translational degrees of freedom are specified by icode:
=-1: Rigid Massless Beam (LS-902 and later)

$\mathbf{R C}$ icode	This joint is a simple nodal constraint. The common rotational degrees of freedom are specified by icode: $\begin{aligned} & =0: \text { none } \\ & =1: X \\ & =2: Y \\ & =3: Z \\ & =4: X \text { and } Y \\ & =5: Y \text { and } Z \\ & =6: Z \text { and } X \\ & =7: X, Y, \text { and } Z \end{aligned}$
REPE n	Repeat the current joint definition for a total of n joints.
;	Terminate this command.

Figure 2-1. Joint definitions.

L3D n data

LABELS

Options:

ELEMENT m
 MAT m
 NODE m
 ;

$\mathbf{L C D} n m t_{1} f_{1} \ldots t_{m} f_{m}$
$\mathbf{L C D F} n m f t_{1} t_{n}$

Begin definition of three-dimensional line n. If line n has been previously defined, this command has the effect of destroying the old definition. See Three Dimensional Line Definitions for a description of the data for this command.

Define offsets for node, element and other item numbering. This applies to meshes which are imported after this command.

Offset element labels by m.
Offset material labels by m.
Offset node labels by m.
End of LABELS command.

Define load curve n with m pairs of time function points.

Define load curve n with m pairs of time function points. f is input as an analytical function of variable t which ranges from t_{1} to t_{n}. Thus to input one period of a sine wave with 100 points:

LCDF $1100[\sin (\mathrm{t})][0]\left[2^{*} \mathrm{pi}\right]$
Begin definition of two-dimensional line n. If line n has been previously defined, this command has the effect of destroying the old definition. See Two Dimensional Line Definitions for a description of the data for this command.

Define part transformation sequence n. This defines a series of operations which can be performed on groups of parts.

Options:

ADD m

COOR n data

Add the list of transformations in sequence number m to the current sequence.

Add n coordinate transformations to the current sequence. The data for this command is described in the section, Coordinate Transformations.

CYLI
PROD $i j$

Perform a cylindrical coordinate transformation.
Form the product of sequence i with sequence j. If sequence i has l transformations, and sequence j has m transformations, then this option produces $1 * m$ transformations and adds them to the current sequence.

Copy parts in global coordinate systems l_{1}, l_{2}, \ldots
Perform a spherical coordinate transformation.
Terminate this command.
Increment the default material number by n for each local copy of a part. This number is initially set to zero.

Define local system name for single point constraints, etc.

The local X-axis is parallel to (p_{x}, p_{y}, p_{z}) and $\left(r_{x}, r_{y}, r_{\mathrm{z}}\right)$ is a vector in the $X Y$-plane.

The center of the local system is $\left(c_{x} c_{y}, c_{z}\right)$. ($p_{x} p_{y}, p_{z}$) is a point along the local X-axis and $\left(r_{x}, r_{y}, r_{z}\right)$ is a point in the $X Y$-plane.

The center of the local system is node n_{1}. Node n_{2} is a point along the local X-axis and node n_{3} is a point in the $X Y$-plane.

Terminate LSYS command.
Code-dependent material data can be input. See the chapter on the specific computer program for input related to the MAT command.

The default material name for the following parts is set to m. This name is initially set to 1 .

Set the MAZE tolerance to tol. This is used for a variety of two-dimensional line definitions and the MAZE parts.

Material displacment boundary condition. This command is used only for rigid body materials in DYNA3D. The load curve number is lc, amp is the scale factor and $\left(f_{x}, f_{y}, f_{z}\right)$ is in the load direction.

MKDS

MFBC mat lc amp $f_{X} f_{y} f_{Z}$

MVBC m lc $\operatorname{amp} f_{x} f_{y} f_{z}$

NFG name

Options:

LSYS name
;
NIP $m_{1} m_{2}$

NK2D $i j$

NK3D

NOPL

NOTE

Make a binary database of digitized 3-D surfaces. Digitized surfaces are generated using the DS command and they are read back in using the RDDS command. This command is primarily intended to allow fast reinitialization during restarts of LS-INGRID.

Apply force to rigid body material mat. The force is scale by load curve lc and factor amp and is in direction ($\mathrm{f}_{\mathrm{X}}, \mathrm{f}_{\mathrm{y}}, \mathrm{f}_{\mathrm{Z}}$).

Material velocity boundary condition. This command is used only for rigid body materials in DYNA3D. The load curve number is lc, amp is the scale factor and $\left(f_{x}, f_{y}, f_{z}\right)$ is in the load direction.

Define nodal force group name.

The nodal force group is defined relative to local system name. (default=global)

End of nodal force groups.
Non-interacting pairs of materials. This is used to determine lists of noninteracting segments for use by FACET to determine radiation view factors.

Output generated is compatible with LSNIKE2D i and j flags specifying which 3-D coordinates correspond to the LS-NIKE2D r and z coordinates. i and j can have values " x ", $" y$ ", or " z ". This command activates additional control commands which are described in $L S$ NIKE2D Options and Materials.

Output is generated for LS-NIKE3D. This command activates additional control commands which are described in LS-NIKE3D Options and Materials.

Do not perform plotting. This command suppresses the normal prompting for a graphics device and is useful in combination with the BATCH command.

Input a not eto be included into the output file. Example:

NOTE "Copyright 1985"

NSMOOTH n

ORV n \{options $\}$
Options:
PLANE $v_{X} v_{y} v_{Z}$

VECTOR $v_{x} v_{y} v_{z}$
;
PAUSE
PLANE nplane

Perform n smoothing operations on surfaces when using the standard part. The default is zero since this can be costly and is usually necessary only for complex free form surfaces.

Input orientation vector n.

The sping/damper distances are measured in the plane defined by normal vector $\left(\mathrm{v}_{\mathrm{X}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{Z}}\right)$.

The spring/damper distances are measured along the vector defined by $\left(\mathrm{v}_{\mathrm{X}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{Z}}\right)$.

End the ORV command.
Execute a FORTRAN pause statement.
Input nplane plane definition. These planes are for applying boundary conditions only. Do not try to use this command more than once in the same input file.

Repeat the following information for each plane:
$p_{x} p_{y} p_{z}$
$q_{x} q_{y} q_{z}$
Tolerance

Global coordinates of any point on the plane.
Any vector normal to the plane.
All nodes within a distance less than tolerance from the plane are included in the definition. If the tolerance is negative, no nodes will be found. The "SW" command in the standard part can also be used to include nodes in the definition.

Options:

CYLI radius len

FRIC m

The stonewall is a cylindrical surface. The radius is radius and the length is len. If len $=0$, then an infinite cylinder is assumed. (LS-910 and later).
Specify stonewall friction properties.
$m=0$: Frictionless sliding occurs.
$0<m<1: m$ is colomb friction coefficient (LS-910 and later).
$m=1$: No tangential motion allowed during contact.
Load curve $l c$ specifies the displacement history of the stone wall in the direction $\left(\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}\right)$.
$\mathbf{L C V} l c \mathrm{v}_{\mathrm{X}} \mathrm{v}_{\mathrm{y}} \mathrm{v}_{\mathrm{z}}$

MASS mass
OVERRIDE i

PLANE $a_{x} a_{y} a_{z}$ alen blen

PRISM $a_{x} a_{y} a_{z}$ alen blen clen

SPHE radius

VELOCITY v

Load curve $l c$ specifies the velocity history of the stone wall in the direction $\left(\mathrm{v}_{\mathrm{X}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{Z}}\right)$.
The stonewall has mass mass. (LS-910 and later).
If a node is also on plane i, then this plane takes precedence.
The stonewall is a finite plane. $\left(a_{x}, a_{y}, a_{z}\right)$ is a vector which specifies an in-plane a-axis. The b-axis is determined from the cross-product of the a-axis with the normal vector. alen is the extent of the plane along the a-axis and blen is the extent along the b-axis. (LS-910 and later). The stonewall is a prism. $\left(a_{x}, a_{y}, a_{z}\right)$ is a vector which specifies an in-plane a-axis. The b-axis is determined from the cross-product of the a-axis with the normal vector. alen is the extent of the plane along the a-axis and blen is the extent along the b-axis. c-len is the extent along the normal axis. (LS-910 and later).
The stonewall is a spherical surface. The radius is radius. (LS-910 and later).
The stonewall has a initial velocity v normal to the surface. (LS-910 and later).

One of the following three options is required to terminate the plane definition:

ASYM
STONE or SW
SYMM

PPLV

PRINT v

PSCALE $m_{1} m_{2}$

Asymmetric boundary conditions are applied to the nodes.
The boundary condition is a stonewall.
Symmetric boundary conditions are applied to the nodes.

Eliminate the part transformation sequence at the top of the stack. See also "PPLV" and "LEV" in this section.

Echo the value of v to the terminal. This is primarily used with the calculator functions to verify calculations.

Scale properties. Materials from m_{l} to m_{2} are treated by this command. If m_{1} and m_{2} are numbers, than standard numeric comparisons are used to determine if materials are within the range. Otherwise, string comparisons are used.

Scale all section properties by scale. This allows for a general unit conversion on section

	properties.
;	Terminate PSCALE command.
PSLV n	Begin performing part transformation sequence n on all following parts. This remains in effect until a PPLV command is given. A stack is used for performing transformation sequences. PSLV adds a transformation sequence to the top of the stack and PPLV eliminates the top sequence on the stack.
QUAD	Turn on generation of elements with quadratic shape functions in standard part. This causes 8node shells and 20 -node bricks to be generated.
RBMG $m_{1} m_{2}$	Merge rigid body m_{1} to rigid body $m_{2} . m_{1}$ is the master and m_{2} is the slave. For a group of merged rigid bodies, there can be only one master. (DYNA3D only.)
READ	Read external database.
Options:	
NDIV n	Number of subdivisions for internal NURB surface processing. (Default=1) Setting this to 2 or 3 can improve the reliability of intersections calculated from NURB surfaces, however, costs and memory requirements will increase roughly proportional to the square of this number.
NURB name	Read a NURB surface database in file name. This ends the READ command.
SC03 name	Read a SC03 database in file name. This ends the READ command.
ROTATION $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$	Assign an initial rigid body rotation to all parts defined after this command. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and $\left(v_{x}, v_{y}, v_{z}\right)$ defines the axis direction. The angular velocity is w.
$\mathbf{R V B C} m$ lc idof $\operatorname{amp} f_{x} f_{y} f_{z}$	Rigid body velocity boundary condition. This command is used only for rigid body materials in DYNA3D. The load curve number is lc, amp is the scale factor and $\left(f_{x} f_{y}, f_{z}\right)$ is in the load direction. idof can be: $=1: X$-translational degree-of-freedom =2: Y-translational degree-of-freedom =3: Z-translational degree-of-freedom

SD n data
$\operatorname{SDMV} s_{1} s_{2}$ data

SI islide
=.4: translational velocity in direction of vector $\left(f_{x}, f_{y}, f_{z}\right)$.
=5: X-rotational degree-of-freedom
=6: Y-rotational degree-of-freedom
=7: Z-rotational degree-of-freedom
$=8$: rotational velocity in direction of vector $\left(f_{x}, f_{y}, f_{z}\right)$.
=9: Y and Z degrees-of-freedom for node rotating about the global X-axis =10: Z and X degrees-of-freedom for node rotating about the global Y-axis
=11: X and Y degrees-of-freedom for node rotating about the global Z-axis

Begin definition of surface n. If surface n has been previously defined, this command has the effect of destroying the old definition. See Surface Definitions for a description of the additional input for this command.

Move surface definitions s_{1} through s_{2}. data is described in the section on Coordinate Transformations.

Define sliding interface islide. These options apply to both slide surfaces and slide lines.

Options:

A3

A5

A13

BIRTH t
BOND t
$\operatorname{BOXM} x_{m} x_{x} y_{m} y_{x} z_{m} z_{x}$
$\operatorname{BOXS} x_{m} x_{x} y_{m} y_{x} z_{m} z_{x}$

COMP t

Select contact interface type a3 (LS-920). Contact type a3 is insensitive to orientation of the contact segments.

Select contact interface type a5 (LS-920). Contact type a5 is insensitive to orientation of the contact segments.

Select contact interface type a13 (LS-920). This model is a single surface method which is principally used for inflating folded airbags.

Birth time for interface (LS-910).
GA slideline option: Bond shear modulus.
Define box for master side of sliding interfaces (LS-910, VECDYNA).

Define box for slave side of sliding interfaces. (LS-910, VECDYNA)

GA slideline option: compressive strength of concrete.

DAMP d

DEATH t
DNIS
DNTS
DUMMY

FAIL e

FD $f d$
FE d
FFN f
FFNE f
FFS f
FFSE f
FRIC f
FS $f s$
GA
HDMG t

LCV

LS
MATERIAL MAST $m_{1} m_{2} \ldots$;

MATERIAL SLAV $m_{1} m_{2} \ldots$;

MAXS t

MERGE

Damping coefficient (percent of critical) (LS910).

Death time for interface (LS-910).
Discrete nodes impacting surface.
Discrete nodes tied to surface.
Dummy slide surface. This option can be used to allow distinct but coincident nodes.

Tied slide surface with failure when volume weighted strain exceeds e (LS-DYNA3D).

Dynamic friction coefficient.
Exponential decay coefficient.
Normal failure force.
Normal failure exponent.
Shear failure force.
Shear failure exponent.
Set static and dynamic friction to f. (default=0)
Static friction coefficient.
Select General Atomic's 1-D rebar slideline.
GA slideline option: Exponent in damage curve.

Load curve for force-penetration in types 19 and 20 contact. (LS-920 and later).

Turn on limited search flag. (Default is off).
The master side of the interface consists of material subset m_{1}, m_{2}, \ldots (VEC/DYNA3D, LS920 and later).

The slave side of the interface consists of material subset m_{1}, m_{2}, \ldots (VEC/DYNA3D, LS920 and later).

GA slideline option: maximum shear displacement.

Coincident nodes are merged.

MSCA s

MTHI t
NFAIL $f s$
NOMERGE
NSWS
PNLM p
PNLS p
PNLT p
RADIUS t
SETS
SFAIL $f s$
SINGLE
SL
SSCA s

STHI t
SV
T10
T11

T12

T13

T14

T15

T16

Scale factor for master thicknesses. (LS-910 and later).

Master side thickness. (LS-910 and later).
Normal failure stress.
Coincident nodes are not merged.
Nodes spot welded to surface.
Change master side penalty to p.
Change slave side penalty to p.
Change penalty to p.
GA slideline option: Radius of rebar.
Shell edge tied to shell surface.
Shear failure stress.
Single sided slide surface.
Sliding only.
Scale factor for slave thicknesses. (LS-910 and later).

Slave side thickness. (LS-910 and later).
Sliding with voids (default).
Type 10 interface.
Type 11 interface. This is the box/material limited automatic contact for shells in LS-910 and later. It is the single surface airbag contact for MVMA/DYNA3D.

Type 12 interface. Automatic contact for shells. (LS-910 and later).

Type 13 interface. (LS-920 and later. Converts to the similar type 11 in MVMA/DYNA3D).

Type 14 interface. Surface to surface eroding contact. (LS-920 and later).

Type 15 interface. Node to surface eroding contact. (LS-920 and later).

Type 16 interface. Single surface eroding
contact. (LS-920 and later).

T17

T18

T19

T20

TBI
TCRS r
TIED

VFRI v
;

SPD n

Options:

ROTA

Type 17 interface. Surface to surface symmetric/asymetric constraint method. (LS920 and later).

Type 18 interface. Taylor and Flanagan contact force calculation technique from PRONTO3D. (LS-920 and later).

Type 19 interface. Rigid body to rigid body with specified force deflection curve. (LS-920 and later.)

Type 20 interface. Node to rigid body with specified force deflection curve. (LS-920 and later.)

Tie-break interface.
Thermal contact resistance is r.
Tied slide surface
Viscous friction coefficient is v.
Terminate this slide surface definition.
Input definition for spring/damper.

The spring/damper is rotary and not translational.

Options (the following options end the SPD command):

LE e
$\mathbf{L V} d$

IEP ety

NE l

NV l

Define a linear elastic spring with stiffness e. (force/displacement).

Define a linear damper with damping constant d. (force/velocity).

Define an elastic-plastic spring with stiffness e (force/displacement), tangent stiffness t (force/displacement), and yield y (force).

Define a nonlinear spring using load curve $l . l$ represents force versus displacement.

Define a nonlinear damper using load curve l. l represents force versus velocity.
$\mathbf{G N} l_{1} l_{u 1} b Y_{t} Y_{c}$

VE $K_{0} K_{i} b T_{c} F_{c}$ iopt

TCO $l K_{u l}$ flag

SLVM $m_{1} m_{2}$

STOL t

STOP
SYNTAX

Options:

REGION

Options:

STANDARD

Options:

Define a general nonlinear spring. The spring loads along load curve l_{1} and unloads along $l_{u 1}$ with hardening parameter b. The initial yield in tension is Y_{t} and Y_{c} for compression. (LS-910 and later).

Three-parameter Maxwell viscoelastic spring. K_{0} is the short time stiffness, K_{i} is the long time stiffness with decay parameter $b . T_{c}$ is a cutoff time and F_{c} is the force after cutoff. iopt is zero for an incremental treatment and nonzero for a continuous treatment. (LS-910 and later).

Inelastic tension or compression only. The spring loads along load curve $1 . K_{u l}$ is an optional unloading stiffness and flag is -1.0 for tension only and +1.0 for compression only. (LS-910 and later).

This command applies to the DYNA3D coupling with CAL3D or MADYMO3D. Deformable materials can be identified as being slaved to rigid bodies which are coupled to CAL3D or MADYMO3D. During the DYNA3D initialization, the deformable materials will be repositioned to reflect the shifting to global coordinates performed by CAL3D or MADYMO3D. The master rigid body is material m_{1} and the slaved deformable material is m_{2}. (LS-920 and later.)

Set the tolerance for surface intersections to t. (Default=1.0e-6.)

Execute a FORTRAN stop statement.
Command for redefining the syntax of various part options.

Set syntax for < Region> in part definitions.

Set syntax for <Region> in standard part.

STANDARD
Use the standard syntax for <Region> in the
standard part.
;

MAZE

Options:

STANDARD

PD
;

OLD

Options:

STANDARD

1

2
;

SYSEND

SYSTEM name

Terminate SYNTAX command.
Set syntax for <Region> in the MAZE part.

The syntax for the <MRegion> is according to this manual and the 1985 INGRID manual from LLNL.

The syntax for the <MRegion> has 6 indices according to the modification to INGRID by LLNL after 1986.

Terminate SYNTAX command.
Set syntax for <Region> in the OLD, BEAM and other low level input parts.

Use a one paramter definition of <Region>. <Region> = imin=imax normally identifies <Region> $=$ imin=imax normally identifies
single nodes and elements only, but can also identify a range with an expression.
Use the standard definition of <Region>. This assumes <Region> = imin imax, unless the first item encountered is an expression in brackets. For an expression, it will only read one parameter.

Use a two parameter definition of <Region>. This does not allow an expression to specify the range, but is necessary for the following:

B [nodebeg] [nodeend] 111000.
This is because the standard method would see [nodebeg] and convert to a one parameter method.

Terminate SYNTAX command.
Terminate existing subsystem definition.
Begin definition of subsystem name. This remains in effect until a SYSEND or another SYSTEM command is encountered or another

SYSTEM.

This command must be typed just prior to the use of the MAZE part. The third side, L_{3}, of the next part will have exactly two times as many elements as side L_{1}. The transition is accomplished with quadrilateral elements. This command does not apply to triangular parts.

THIC t
TIND mat $I_{x x} I_{x y} I_{x z} I_{y y} I_{y z} I_{z z}$
TINE mat $I_{x x} I_{y y} I_{z z} I_{x y} I_{y z} I_{z x}$
TIVE mat $v_{x} v_{y} v_{x} w_{x} w_{y} w_{z}$

TMCG mat $c_{x} c_{y} c_{z}$
TMM $n t$

TMSM $m s_{1} s_{2} \ldots$;

TMVP mat (transformation)

This command must be typed just prior to the use of the MAZE part. The third side, L_{3}, of the next part will have exactly three times as many elements as side L_{1}. The transition is accomplished with quadrilateral elements. This command does not apply to triangular parts.

All parts defined after this command have initial temperature t. This remains in effect until reset with another "Temp" command. This can be overridden with an individual part. t can be a single number or it can be an expression of the form $t(x, y, z)$. This allows nodes to be assigned temperatures based on an analytical expression of a temperature distribution based on the nodal coordinates.

The default thickness for shells is t.
Specify inertia tensor.
Specify inertia tensor.
Initial velocities (global), translational and rotational

Specify center of gravity.
The total mass of material n is t. The density of the material is determined by dividing the total mass of the material by the calculated volume.

The inertial properties which are input for material m include the masses of deformable materials s_{1}, s_{2}, \ldots. The properties of m are computed such that the total mass properties of $m, s_{1}, s_{2} \ldots$ is equal to the input values.

Move center of gravity and inertias.
Transformation refers to the section, Coordinate Transformations.

Define tracer particles for material.

Options:

$\mathbf{L N P T} p_{x} p_{y} p_{z} q_{x} q_{y} q_{z} n$

MATERIAL t
POINT $p_{x} p_{y} p_{z}$

SPACE t
TIME t
;

TRANS

TZ2D $i j$

TZ3D

Generate n equals spaced tracer particles on the line from $\left(p_{x}, p_{y}, p_{z}\right)$ to $\left(q_{x}, q_{y}, q_{z}\right)$.

The tracer particle is fixed to a material point.
Define a tracer particle starting at point
(p_{x}, p_{y}, p_{z}).
The tracer particle is fixed in space.
Activation time for tracer particle.
Terminate this command.
This command must be typed just prior to a MAZE part and changes the command such that $k+m$ elements are generated along sides L_{1} and L_{2} and m elements are generated along sides L_{3} and L_{4}. This command does not apply to triangular parts or parts with variable zoning.

Output generated is compatible with TOPAZ2D. i and j flags specifying which 3-D coordinates correspond to the TOPAZ2D r and z coordinates. i and j can have values " x ", " y ", or " z ". This command activates additional control commands which are described in TOPAZ Options and Materials.

Output is generated for TOPAZ3D. A FACET input deck will also be created if necessary. This command activates additional control commands which are described in TOPAZ Options and Materials.

Issue a Fortran write statement. variables v1, $\mathrm{v} 2, \ldots$ are written to standard out and format is the Fortran format statement. Example:

WRITE "('I =',e13.5)" [i] ;
Global X-offset.
Scale all X-coordinates.
Begin definition of volume n. If volume n has been previously defined, this command has the effect of destroying the old definition. Volume Definitions describes the data for this command.

YOFF d_{y}
YSCA s
VELOCITY $v_{x} v_{y} v_{z}$

ZOFF d_{z}
ZSCA s

Global Y-offset.
Scale all Y-coordinates.
Assign initial rigid body velocity $\left(v_{x}, v_{y}, v_{z}\right)$ to all parts defined after this command. v_{x}, v_{y} and v_{z} can be functions of (x, y, z) to allow initial velocity distributions.

Global Z-offset.
Scale all Z-coordinates.

3. IDEAS Part

The IDEAS part provides for importing SDRC/IDEAS neutral files into LS-INGRID. The form of the part is as follows:

IDEA filename
<optional functions>
END
filename is the name of the IDEAS neutral file.

3.1 Options and Functions

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of:

Keyword <region> function data
Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:

SI [mat==2] $1 \mathrm{M} \quad$ C Elements of material 2 are assigned to
C the master side of contact interface 1.
Variables available for function application are as follows:

Variable	Description
xy z	Part local coordinates of node or element center. Gg yg zg
Global coordinates of node or element	
node mat elem	Node number. Material number.
	Element number.

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data
Input nc local coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.

CYLI
Nodes are converted from cylindrical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
X & =R \cos \theta \\
Y & =R \sin \theta
\end{aligned}
$$

$\operatorname{LREP} l_{1} l_{2} \ldots l_{n}$

MATE matnum
REPE $l_{1} l_{2} \ldots l_{n}$

ROTA $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$

SPHE

TEMP t

THIC thic
VELO $v_{x} v_{y} v_{z}$

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

The part has material number matnum.
Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and (v_{x}, v_{y}, v_{z}) defines the axis direction. The angular velocity is w in radians per second.

Nodes are converted from spherical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness thic for this part.
Assign initial rigid body velocity to all nodes within this parts. $\left(V_{x}, V_{y}, V_{z}\right)$ is the global velocity vector. (V_{x}, V_{y}, V_{z}) can be expressed as a function of x, y, z coordinates.

4. PATRAN Part

The PATRAN part provides for importing PATRAN neutral files into LS-INGRID. The form of the part is as follows:

PATRAN filename
<optional functions>
END
filename is the name of the PATRAN neutral file.

4.1 Options and Functions

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of

Keyword <region> function data
Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:
$\begin{array}{ll}\text { SI }[\text { mat==2] } 1 \mathrm{M} & \text { C } \begin{array}{l}\text { Elements of material } 2 \text { are assigned to } \\ \text { C }\end{array} \text { the master side of contact interface } 1 .\end{array}$
Variables available for function application are as follows:

Variable	Description
x y z	Part local coordinates of node or element center. xg yg zg
Global coordinates of node or element	
node	Node number.
mat	Material number.
elem	Element number.

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data
Input nc local coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.

CYLI
Nodes are converted from cylindrical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

LREP $l_{1} l_{2} \ldots l_{n}$

MATE matnum
$\operatorname{REPE} l_{1} l_{2} \ldots l_{n}$

ROTA $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$

SPHE

TEMP $_{t}$

THIC thic
VELO $v_{x} v_{y} v_{z}$

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

The part has material number matnum.
Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and (v_{x}, v_{y}, v_{z}) defines the axis direction. The angular velocity is w in radians per second.

Nodes are converted from spherical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{R} \cos \theta \sin \varphi \\
& \mathrm{Y}=\mathrm{R} \sin \theta \sin \varphi \\
& \mathrm{Z}=\mathrm{R} \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness thic for this part.
Assign initial rigid body velocity to all nodes within this parts. $\left(V_{x}, V_{y}, V_{z}\right)$ is the global velocity vector. (V_{x}, V_{y}, V_{z}) can be expressed as a function of x, y, z coordinates.

5. NASTRAN Part

The NASTRAN part provides for importing NASTRAN input files into LS-INGRID. The form of the part is as follows:

NASTRAN filename
<optional functions>
END
filename is the name of the NASTRAN input file.

5.1 Options and Functions

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of:

Keyword <region> function data
Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:

$$
\begin{array}{ll}
\text { SI [mat==2] } 1 \mathrm{M} & \begin{array}{l}
\text { C Elements of material } 2 \text { are assigned to } \\
\text { C the master side of contact interface } 1 .
\end{array}
\end{array}
$$

Variables available for function application are as follows:
Variable Description
$x y z$
$x g y g z g$
Part local coordinates of node or element center.
Global coordinates of node or element
center.
node Node number.
mat Material number.
elem Element number.

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data
Input nc local coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.

CYLI

LREP $l_{1} l_{2} \ldots l_{n}$

MATE matnum
REPE $l_{1} l_{2} \ldots l_{n}$
$\operatorname{ROTA} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{w}$

SPHE

TEMP t

THIC thic
VELO $v_{x} v_{y} v_{z}$

Nodes are converted from cylindrical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

The part has material number matnum.
Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n} If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and (v_{x}, v_{y}, v_{z}) defines the axis direction. The angular velocity is w in radians per second.

Nodes are converted from spherical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness thic for this part.
Assign initial rigid body velocity to all nodes within this parts. $\left(V_{x}, V_{y}, V_{z}\right)$ is the global velocity vector. (V_{x}, V_{y}, V_{z}) can be expressed as a function of x, y, z coordinates.

Notes:

1. The following NASTRAN keywords are supported:

CBAR	CBEAM	CDAMP
CELAS2	CHEXA	CMASS2
CONM2	CORD1C	CORD1R
CORD1S	CORD2C	CORD2R
CORD2S	CPENTA	CQUAD4
CTETRA	CTRIA3	FORCE
GRAV	GRID	MAT1
MPC	PBAR	PBEAM
PLOAD2	PLOAD4	PSHELL
PSOLID	RBE2	SPC

2. The following keywords from MSC/DYNA are also supported:

DYMAT24
MATRIG
3. To preserve the arbitrary node, element and material numbering of NASTRAN input files, use the ARBITRARY command. (See LS-DYNA3D Commands and Materials.)
4. The material properties from the NASTRAN input are generally not used for LSDYNAxx calculations. To assign properties from LS-INGRID, the materials may be defined either before or after the NASTRAN part. The LS-INGRID material ID's are input the same as those of the NASTRAN input. If the LS-INGRID materials are defined prior to the NASTAN model input, but the sections are not input, then LS-INGRID will try to use the section property data from the NASTRAN input. Section properties may be scaled using the global command: PSCALE.
5. Node, element and material ID's can be shifted using the global command, LABELS.

6. Standard Part

6.1 DEFINITIONS

Index Space: An index space is a three-dimensional discrete coordinate system with integer values greater than or equal to 1 in each of the three directions. The three discrete coordinates are labeled, I, J, and K axes respectively. Each point in the index space (i, j, k), represents a nodal point. Elements are defined as groups of adjacent nodes in the index space.

Region: A region is any rectangular or cubic block of nodes. A region is usually defined by a block in an index space.

Part: A part is a collection of regions which can be grouped and generated conveniently in an index space. Beginning users will typically use one region per part while more experienced users will be able to group numerous regions together into complex parts.
Model: The final model is a collection of parts. Each part has its own index space and is independent of other parts. Parts are connected together either by global coincident node removal, slide surfaces, or other constraints.

The standard part in LS-INGRID is based on a three-dimensional index space which is commonly used for finite difference mesh generation. Although this can be somewhat awkward for finite element meshes, proper usage technique and some enhancements have made this quite effective for certain geometries including some that are difficult for standard finite element mesh generators. The principal enhancement to the three-dimensional index space is an additional type of index notion, the "Index Progression". Index progressions provide a concise and simple method for describing complex structures, and are used to input data to LS-INGRID. The following is a detailed description of the index space notion and the index progression. This information provides the user with the concepts necessary to use LS-INGRID effectively.

Index Space

Node generation in LS-INGRID is done by a mapping from Index space onto the object of interest as is shown in Figure 6-1. Each region of the object is referenced by a set of six indices; (IMIN, JMIN, KMIN) specify the minimum indices for a region in the index space and (IMAX, JMAX, KMAX) specify the maximum indices. For a solid region, all eight corner nodes are defined by combinations of minimum and maximum indices. Table 61 lists the indices of the vertices in the example of Figure 6-1. We assume that any set of three indices, (I, J, K), defines a region in space.

If KMIN is set equal to KMAX, the resulting region is a plane of constant K as shown
in Figure 6-2a. Similarly, a plane of constant I is defined when IMIN is set equal to IMAX and a plane of constant J for JMIN equal to JMAX. A line in the index space is defined by holding two indices constant while the third index varies as shown in Figure 6-2b.

Figure 6-1. Mapping from index space to object space.

Figure 6-2a. Planes in index space.

Figure 6-2b. Lines in index space.

TABLE 6-1. Indices associated with the vertices of a region.

Node	Indices	Position
A	$(1,1,1)$	(IMIN, JMIN, KMIN)
B	$(5,1,1)$	(IMAX, JMAX,
KMAX)		
C	$(1,1,2)$	(IMIN, JMIN, KMIN)
D	$(5,1,2)$	(IMAX, JMAX,
KMAX)		
E	$(1,5,1)$	(IMIN, JMIN, KMIN)
F	$(5,5,1)$	(IMAX, JMAX,
KMAX)		
G	$(1,5,2)$	(IMIN, JMIN, KMIN)
H	$(5,5,1)$	(IMAX, JMAX,
KMAX)		

An index space is defined as the set of all possible indices \llIMAX, \llJMAX, 1 \ll KMAX. If an index is zero, then it varies over all possible indices. Thus, the indices (3, $0,2)$ defines a line which extends across the index space, and $(0,0,2)$ defines a plane which divides the index space into two regions. $(0,0,0)$ defines the entire index space.

Index Progressions

Index progressions were developed to facilitate the defining of multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one simply specifies the progression in indices along the I, J, and K directions respectively. For example, the region $(2,7,6,8,9,10)$ is represented as the progression $(2,8) ;(7,9) ;(6,10)$. If there is a region adjacent to $(2,7,6,8,9,20)$ such as $(2,7,2,8,9,6)$, the two regions are defined together by a new progression $(2,8) ;(7,9) ;(2,6,10)$. To define the four solids regions shown in Figure 6-3a requires the progression (3, 5, 7); $(2,4,6) ;(1,4)$.

Index progressions for planes are defined in a similar manner. The index which remains constant throughout a plane is indicated by a negative sign so the plane (2, 5, 5, 2, 7, $8)$ is represented as $(-2) ;(5,7) ;(5,8)$.

In Figure 6-3b there are eight planes which can be represented by the progression $(3,5$, $7) ;(2,4,6) ;(-1,-4)$. The savings by this notation is apparent since specifying separately the eight regions in Figure 6-3b requires 49 number where as the index progression requires only 8 numbers.

(a) Index Space

$(7,6,1)$
(b) Object Space

Figure 6-3. Index progressions for planes and solids.

Another addition to the index progression notation is the zero index. The two solids regions shown in Figure 6-4 could be represented as an index progression except that they are not connected. In this case, a zero index is used along the I direction to indicate that the structure is discontinuous. This gives the progression (2, 4, 0, 6, 8); (3, 7); (4, 5). Plane regions can be separated by the zero index in a manner similar to solid regions.

More complicated regions can be represented by combining index progressions. An example of this is in Figure 6-5. The open box could be represented by two index progressions $(-2,-5) ;(1,7) ;(3,5)$; and $(2,5) ;(1,7) ;(-3,-5)$, but they can also be combined to give $(-2,-5) ;(1,7) ;(-3,-5)$. Figure $6-6$ shows several more structures and their index progression representation.

LS-INGRID uses the index progression notation to set up regions in the index space which are to be mapped onto the object of interest. This notation has the advantage that it requires little input data and with less than 20 indices can represent thousands of configurations in index space. In practice, not all configurations in index space can be defined by an index progression so a command is added to allow deletion of regions in the index space. The delete command along with the index progression is enough to produce almost any conceivable region in the index space and is used as the central part of LSINGRID's mesh generation.

Figure 6-4. Separated solid regions.

Figure 6-5. Open Box.

(c) Cube in a Box
$((-2,4,6,-8) ;(-2,4,6,-8) ;(3,5))$
(a) Intersecting Plates
$((2,-4,6) ;(2,-4,6) ;(-3,-7))$

(c) Examples of Region Deletion

$$
((-2,-6,-10) ;(3,7) ;(-2,-4))
$$

Deleted Regions:
$(2,3,2,6,7,2)$ and $(6,3,4,10,7,4)$

(d) Planes and Solids with Gaps
$((2,4,0,6,-8) ;(2,4,0,6,8) ;(-2,4,6,-8))$

Figure 6-6. Examples of index progressions.

Each part definition consists of the following data:

START

Index progression
Part control commands and functions
Loads and Boundary Conditions
END
"START" signifies the beginning of a part definition and is require as the first card in each part. Part control commands affect properties of the mesh. Following is a list of the default properties for a part.

4 node plate elements
8 node solid element
rectangular coordinates
material property $=1$
plate thickness $=0.0$

The dimension of the index space along with all plane and solid regions are defined by the index progression. Function cards manipulate the mesh defined by the index progression and an "END" signifies the end of a part. Following are some important definitions in addition to those previously given.

Index Space

The set of all indices defined by an index progression. For example, the progression $(2,3,-5,10),(4,5),(2,6)$ defines the index space $2^{\wedge}|I|^{\wedge} 10,4 \wedge|J|^{\wedge} 5,2^{\wedge}|K|^{\wedge} 6$.

Reduced Index Space

The reduced index space references positions in an index progression. The point, I, J, K in the reduced index space refers to the point in the index progression defined by the I th integer in the I-progression, the J th integer in the J-progression and the K th integer in the K progression. For the progression $(2,3,-5,10),(4,5),(2,6)$ the relationship between the reduced index space and the index space is shown in Table 6-3.

Unless otherwise noted, all points and regions are defined in the reduced index space. Since the reduced index space is independent of the actual values of the index progression, the mesh can be refined or contracted only by changing the index progression.

Table 6-3. Comparison of the Reduced Index Space and the Index Space for the Index Progression (2, 3, $-5,10$), $(4,5),(2,6)$

Reduced Index Space	Index Space
$1,1,1$	$2,4,2$
$1,1,2$	$2,4,6$
$1,2,1$	$2,5,2$
$2,2,2$	$3,5,6$
$3,1,2$	$5,4,6$
$4,1,1$	$10,4,2$

6.2 Index Progression

Each part must have an index progression. The following input is required.
$i_{1} i_{2} \ldots i_{i}$
$j_{1} j_{2} \ldots j_{i}$;
$k_{1} k_{2} \ldots k_{i}$
$x_{1} x_{2} \ldots x_{i}$
$y_{1} y_{2} \ldots y_{i}$
$z 1 z_{2} \ldots z_{i}$

Progression in I direction
Progression in J direction
Progression in K direction
Initial X-coordinates
Initial Y-coordinates
Initial Z-coordinates

6.3 Part Commands and Functions

All functions have the following form:
Keyword - index specification - parameters
Index specifications have three types which are abbreviated as <Point>, <Region>, or <Index Progression>. All index specifications are applied in the reduced index space. The input is defined as follows:

<Point>

<Region>
<Index Progression>
$i_{1} i_{2} i_{3} \ldots ; j_{1} j_{2} \ldots ; k_{1} k_{2} \ldots$;

Input for <point> consists only of the three indices ($\mathrm{i}, \mathrm{j}, \mathrm{k}$). If any index is input as zero, then the index varies from the smallest to the largest possible value.

The function locates the region defined by $\left(i_{m}, j_{m}, k_{m}, i_{x}, j_{x}, k_{x}\right)$. If i_{m}, j_{m}, or k_{m} is input as zero, the zero index is given the minimum possible value. If i_{x}, j_{x}, or k_{x} is input as zero, the zero index is set to the maximum possible value.

This is used to define multiple regions according to
the rules for index progression. If no indices are found for a list in a direction, then the function is assumed to go all the way through the index space in that direction.

Functions which use <Region> or <Index Progression> for index specification can be repeated and shifted to other parts of the index space. The general form of these commands is as follows:

Keyword - <Region> or <Index Progression> parameters - first offset - parameters - second offset - parameters.

The offset information is as follows:

+ -or- $+\mathbf{0}$
Either a " + " or a " +0 " is required as the first information for the offset. If " + " is used then the offset occurs from the region defined by the last offset. If " +O " is used then the offset is relative to the region defined by <Region> or <Index Progression>.

One and only one of the following commands must be input following "+" or "+o".

I $d i \quad$ Increment I indices by $d i$.
$\mathbf{J} d j \quad$ Increment J indices by $d j$.
K dk
Increment K indices by $d k$.
$\mathbf{I} \mathbf{J} d i d j$
$\mathbf{J K} d j d k$
$\mathbf{K I} d k d i$
$\mathbf{I J K} d i d j d k$
SIJ
SJK
SKI
A <Region>
ityp
x
y
z
r

Increment I and J indices by $d i$ and $d j$.
Increment J and K indices by $d j$ and $d k$.
Increment K and I indices by $d k$ and $d i$.'
Increment I, J, and K indices by $d i, d j$, and $d k$.
Switch I indices with J indices.
Switch J indices with K indices.
Switch K indices with I indices.

Form a curved edge between nodes A and B. The region is a line in the reduced index space.

Flag specifying type of curve.
$=1$: A parabola through point P1 (See Figure 6-7).
=2: A circular arc through point P1.
=3: A circular arc with center P2.
X-coordinate of point P 1 or P 2
Y-coordinate of point P1 or P2
Z-coordinate of point P1 or P2
Radius

If the radius is non-zero for a circular arc with center P2, then nodes A and B (See
Figure 6-7) are moved radially from P2 until they are a distance equal to the radius from P2. An arc is formed through the nodes at their final location.

Figure 6-7. Curved boundaries.

For any plane normal to the axis of rotation such as ABCD in Figure $6-8$, a point 0 on the axis of rotation is located in the center of the plane. If the radius of the cylinder is not zero, then the points A, B, C and D are moved radially from 0 until they are a distance, R, from point 0 . Curved boundaries are then formed for the segments $A B, B D, A C$ and $C D$ using center. 0 . This is done for each plane normal to the axis of rotation in the reduced index space.

(IMIN, JMIN, KMIN)

Figure 6-8. Cylindrical region.

AC, ACE <Region>
idir
$p_{x} p_{y} p_{z}$
r
$q_{x} q_{y} q_{z}$
<Region> is a surface in the index space.
Flag specifying axis of rotation in the index space.
$=" I ": I$-axis is axis of rotation
$=" J ": J$-axis is axis of rotation
$=" K$ ": K-axis is axis of rotation
Any point on axis of cylinder (See Figure 6-9).
Radius of the cylinder.
Any vector parallel to the axis of the cylinder.

Figure 6-9. Cylindrical surface.

AUTO

BG

Perform automatic smoothing of edges and surfaces which represent continuous surface definitions..

Beam generation command.

The BG command permits beam elements to be defined within parts defined using an index space. If only beam elements are desired for the part, then all of the shell and solid elements can be deleted.

Options:

MT m
SC n
NGEN n
N1 <Point>
P1 $p_{x} p_{y} p_{z}$
$\mathbf{N} 2$ <Point>
P2 $p_{x} p_{y} p_{z}$
B1 n

Beams have material number m.
Beams have section number n.
Generate n beams from point 1 to point 2 .
Point 1 is located at <Point>
Point 1 is located at $\left(p_{x}, p_{y}, p_{z}\right)$
Point 2 is located at <Point>
Point 2 is located at (p_{x}, p_{y}, p_{z}).
Set boundary code for point 1 . n is a six digit binary number which specifies degrees of freedom which are to be constrained.
Numbering the digits from left to right, they affect the following degree-of-freedom.
V2 $v_{x} v_{y} v_{z}$
B2 n
NO <Point>
PO $p_{x} p_{y} p_{z}$
VO $v_{x} v_{y} v_{z}$
CO p_{x}, p_{y}, p_{z}
SO p_{x}, p_{y}, p_{z}
;
x $x_{0} y_{0} z_{0} v_{x} v_{y} v_{z} r_{0} r_{1} f$

BIAS $x_{0} y_{0} z z_{0} v_{x} v_{y} v_{z} r_{0} r_{1} f$

COOR nc data
dir

CYLI

Nodes are converted from cylindrical to rectangular coordinates. The equations for this
transformation are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

D <Region> or
Region deletion keyword.

DI <Index Progression>
EQSP

FIND < Point> exp1 exp2 exp3 exp4
Equal space along arc. This applies to the "AC" and "A" functions.

The FIND command places the generated coordinates of <Point> into the variables [cenx] [ceny] [cenz] and the node number into [node]. Four expressions must be input as part of this command.

Example:

FIND 121 [bp3x=cenx] [bp3y=ceny] [bp3z=cenz] [bp3n=node]

I, J or K <Point>

dir2
$\mathrm{c}_{1} c_{2} c_{3} \ldots$

INT < Region> $s_{1} s_{2}$

LORI $v_{x} v_{y} v_{z}$

Specify independent variable for the function.
$=" I$: coordinates vary as a function of the
I-index.
$=J^{\prime \prime}$: coordinates vary as a function of the J-index.
$=" K$ ": coordinates vary as a function of the K-index.

Flag specifying which coordinate is modified.
$=" X$ ": X-coordinate is modified.
$=" Y ": Y$-coordinate is modified.
="Z": Z-coordinate is modified.
New progression of coordinates along index dirl.

Nodes within <Region> lie on the intersection of surface s_{1} and s_{2}. Surfaces are defined using the "SD" command in the control section. These commands will be generated automatically if two "SF" commands result in an intersection surface in the index space.

Specify local axis for orthotropic shell elements. The vector in the local part system is (v_{x}, v_{y}, v_{z}).
The vector $\left(v_{x}, v_{y}, v_{z}\right)$ may be specified as a function of the local x, y, z coordinates. For example:

LORI $[-y][x] 0$

LREP $l_{1} l_{2} \ldots l_{n}$

MA or MB
<POINT>
<REGION>
n
$d_{x} d_{y} d_{z}$

MATE m
MS <Region>
idir

Repeat part command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Point functions. These commands are used to modify 1,2 , or 3 coordinates of groups of nodes.

For "MA" only.
For "MB" only.
Flag indicating which coordinates to change.
$=" X$ ": x coordinate is changed
=" $Y^{\prime \prime}$: y coordinate
="Z": z coordinate
$=" X Y$ ": x and y coordinates
$=" X Z$ ": x and z coordinates
$=" Y Z ": y$ and z coordinates
="XYZ": x, y, and z coordinates
New coordinates. Only the coordinates required by flag n need to be input. The new coordinates are added to the old coordinates.

The part has material number m.
Apply multiple surface equations to <Region>. This command permits the identification of parallel index planes for the purpose of applying surface equations. The function of this command is similar to the " SF " command; however, this command can result in considerable reduction in input for many common cases.
<Region> is divided into a series of parallel planes normal to the axis in index space specified by idir.
$=" I ": I$-axis
$=" J ": J$-axis
$=" K ": K$-axis
Next, one surface equation must be input for each of the index planes in <Region> normal to the specified axis. One of the following options may be used.

Option 1:

$s f_{1}$
$s f_{2}$
-
-
-

Option 2:

PPX, PPY, or PPZ
$u_{1} u_{2} u_{3} \ldots$

Data for first surface equation (See Surface Definitions).
Data for second surface equation.

Parallel planes normal to x, y, or z axes respectively.

The point along the specified axis where the planes intercept. One value must be input for each plane.

Option 3:

CNSP

$$
p_{x} p_{y} p_{z}
$$

Center of the spheres.

$$
r_{1} r_{2} r_{3} \ldots
$$

Radii.
Option 4:

CNCY

$p_{x} p_{y} p_{z}$
$v_{x} v_{y} v_{z}$
$r_{1} r_{2} r_{3} \ldots$
Radii.

Option 5:

PON, POX, POY, POZ
$p_{x} p_{y} p_{z}$
$q_{x} q_{y} q_{z}$
$o_{1} o_{2} o_{3} \ldots$
MT <Region> or
MTI <Index Progression>
mat
MTV ${ }_{m} n$

Planes offset normal or in the x, y, or z direction, respectively.

Any point on the plane.
Any vector normal to the plane.
Offsets in the requested direction.
Signifies material command.

Material number.
All elements contained within volume definition

OR <Region>
l_{1}
m are assigned material number n.

Specify orientation of local axes relative to the index space. This is necessary when orthotropic materials are used and/or if 8-node shells are requested.

Local r axis.

$$
\begin{aligned}
& =" I ": I \text {-axis } \\
& =" J ": J \text {-axis } \\
& =" K ": K \text {-axis }
\end{aligned}
$$

Local s axis.
$=" I ": I$-axis
$=" J ": J$-axis
$=" K ": K$-axis
ORDER $d 1 d 2 d 3$
Order of writing nodes in index space ($d=$ " I ", " J ", or " K ").

PA.i.Commands:PA; or PB.i.Commands:PB; Point functions. These commands are used to modify 1, 2, or 3 coordinates of groups of nodes.
<POINT>
<REGION>
n
$d_{x} d_{y} d_{z}$

REPE $l_{1} l_{2} \ldots l_{n}$

RES < Region>
idir

For "PA" only.
For "PB" only.
Flag indicating which coordinates to change.
$=" X$ ": x coordinate is changed
=" Y ": y coordinate
="Z": z coordinate
="XY": x and y coordinates
="XZ": x and z coordinates
="YZ": y and z coordinates
$=" X Y Z ": x, y$, and z coordinates
New coordinates. Only the coordinates required by flag n need to be input. The old coordinates are replaced by the new coordinates.

Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Use unequal element spacing.
Direction of sides to be operated on in <Region>.
$=" I ": I$-direction

$$
\begin{aligned}
& =" J ": J \text {-direction } \\
& =" K ": K \text {-direction }
\end{aligned}
$$

r

REST name

ROTATION $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$
$\mathbf{R R}$ <Region>
data

SAVE name

SF <Region> ityp -or-
SFI <Index Progression> ityp

The ratio of the length of one element side to the next element side as the I, J, or K index increases is r.

Restore the nodal coordinates of the existing standard part from file "name". For complicated parts, this can save considerable amounts of computing. See also the SAVE command.

Assign an initial rigid body rotation to all parts defined after this command. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and $\left(v_{x}, v_{y}, v_{z}\right)$ defines the axis direction. The angular velocity is w in radians per time unit.

Rotate region.
Data for this command is described in the section on Coordinate Transformations.

Save the nodal coordinates of the existing standard part to file "name". For complicated parts, this can save considerable amounts of computing by using the REST command.

Surface command. This command allows for the exact equation specification for 3-D surfaces. The command operates by moving nodes from an initial location to the closest point on the surface. Intersections of surfaces in the index space are detected and calculated. Since intersections are rarely unique the user must define initial coordinates which are near the final configuration using the initial coordinates and/or point functions. This is often necessary for LS-INGRID to converge to the correct geometry.

If a part is generated in cylindrical coordinates the surfaces are still assumed to be in rectangular coordinates. This permits nonaxisymmetric surfaces to be generated on primarily axisymmetric parts.
ityp $=$ "SD $n "$. If itype $=$ "SD" then the surface is defined using the command "SD" in the control section. The surface name must be input to complete this option.

SFE < Region> dir ityp -or-

SFEI <Index Progression> dir ityp

SFV <Region> -or-
SFVI <Index Progression>

SPHE

TEMP $_{t}$

THIC t
ityplo(=,/) "SD". ityp refers to an option in Surface Definitions. See Surface Definitions for the remaining input.

Surface command. These commands are similar to
the and SFI commands. The primary difference is that only edges of blocks oriented in direction dir (dir = " I ", " J " or " K ") are projected onto the surface rather than all nodes within the region.
ityp= "SD n ". If itype = "SD" then the surface is defined using the command "SD" in the control section. The surface name must be input to complete this option.
ityplo(=,/) "SD". ityp refers to an option in Surface Definitions. See Surface Definitions for the remaining input.

Surface command. These commands are similar to
the SF and SFI commands. The primary difference is that only vertices of blocks are projected to the nearest point on a surface rather than all nodes within a region.
ityp= "SD $n "$. If itype = "SD" then the surface is defined using the command "SD" in the control section. The surface name must be input to complete this option.
ityplo(=,/) "SD". ityp refers to an option in Surface Definitions. See Surface Definitions for the remaining input.

Nodes are converted from spherical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness t for this part. The thickness, t, may be specified as a function of the part local coordinates to permit thickness distributions.

TRI2 t

TRIA t

VELOCITY $v_{x} v_{y} v_{z}$

VTSP

All quadrilateral shell elements in this part will be converted to triangular shells. The attached pressure segments, contact segments, etc. will remain as quadrilaterals.

All quadrilateral shell elements in this part will be converted to triangular shells. The attached pressure segments, contact segments, etc. will also be converted to triangles.

Assign initial rigid body velocity $\left(V_{x}, V_{y}, V_{z}\right)$ to all
parts defined after this command. $\left(V_{x}, V_{y}, V_{z}\right)$ can be expressed as a function of x, y, z coordinates to allow for velocity distributions.

Equal space along chord. This applies to the "AC" and "A" functions.

7. Beam Part

Beam generation in LS-INGRID is performed by a special part. The data in the part is as follows:

BEAM

Local nodal point input.
0 (zero)
Element generation commands
0 (zero)
Optional functions
END

Local Node Point Input

Important vertices are listed in this section. All points in this section are assigned node numbers in the global system and output even if there are no elements connected. Nodes are input sequentially and assigned local node numbers starting from one. These numbers are used later for generating elements.

ctype	Coordinate transformation to be performed on nodal coordinates. ="RT": rectangular coordinates (no transformation) ="CY": cylindrical coordinates ="SP": spherical coordinates
n	n is a six digit binary number which specifies degrees of freedom to be constrained. Numbering the digits from left to right they affect the following degrees of freedom.
1st digit: x-displacement	
=0 free	
=1 fixed	

Element Generation Commands

is
if
nel
mat
isect
normal

First local node number in a beam sequence.
Last local node number in a beam sequence.
Number of elements to be generated from is to if.

Material number for the beams.
Section property number for the beams.
Third local node for defining the orientation of the beams. Note: this node can be moved by the "REPEAT" command and is not necessarily in global coordinates.

7.1 OPTIONS AND Functions

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of

Keyword <region> function data
Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:

$$
\begin{array}{ll}
\text { SI }[\text { mat }==2] 1 \mathrm{M} & \text { C Elements of material } 2 \text { are assigned to } \\
\text { C the master side of contact interface } 1 .
\end{array}
$$

Variables available for function application are as follows:

Variable x y z	Description
center.	Part local coordinates of node or element
center. yg zg	
node mat elem	Global coordinates of node or element

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data
Input nc global coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.

CYLI
$\operatorname{LREP} l_{1} l_{2} \ldots l_{n}$
$\mathbf{R E P E} l_{1} l_{2} \ldots l_{n}$

ROTA $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$

SPHE

TEMP t

VELO $v_{x} v_{y} v_{z}$

Nodes are converted from cylindrical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. (p_{x}, p_{y}, p_{z}) is any point on the axis of rotation and (v_{x}, v_{y}, v_{z}) defines the axis direction. The angular velocity is w in radians per time unit.

Nodes are converted from spherical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Assign an initial rigid body velocity to all nodeswithin this part. V_{x}, V_{y}, V_{z} is the global velocity vector and it can be expressed as a function of x, y, z coordinates.

8. Old Data Part

This part permits the user to input and manipulate models which were generated by other mesh generators. It can also be used to take old finite element models and update them The data in the part is as follows:

OLD

Commands
END

The "commands" include the input nodes and elements in the form of tables. These tables may be either in free format or formatted. Before a table is input, a list of keywords is input which tells what the columns correspond to. After the data is input, the part may then be moved or otherwise modified before inclusion with the rest of the LS-INGRID model.

NODES n

Options:

BCND

BCNR

BCSP
DUMMY
FORM f

INCLUDE

K

NUMBER

T
n nodal points are input.

LS-NIKE3D displacement boundary codes are input.

LS-NIKE3D rotational boundary codes are input.

SAP boundary codes are input.
Read and ignore this item. (Must be a number).
Nodal points are read using format $f . f$ is a character string up to 80 characters long which has the correct FORTRAN format. All items must be read in floating point format. No more than one node point can be specified on a card. If this option is not used then nodal point data is input free format.

Nodes are read from file. This option terminates the NODES command and reads the nodes.

Node point increment k is input.
Node numbers are to be read. If this option is not used, then node numbers are assigned sequentially.

Temperature.

BEAMS n

Options:

FORM f

NUMBER

K

MATERIAL

SECTION
INCLUDE

NODES

N1

N2
N3
DUMMY
;

SHELLS n

Options:
X-coordinate.
Y-coordinate.
Z-coordinate.
Terminate options and read the nodal points. This is done automatically if an include file is specified.
n beam elements are input.

Beam elements are read using format $f . f$ is a character string up to 80 characters long which has the correct FORTRAN format. All items must be read in floating point format. No more than one element can be specified on a card. If this option is not used then nodal point data is input free format.

Element numbers are to be read. If this option is not used, then element numbers are assigned sequentially.

Element increment K is input.
Material numbers are input.
Section property numbers are input.
Beam elements are read from file. This option terminates the BEAMS command and reads the beam elements.

Three nodes are input (first node, second node, and node defining local two axis).

First node.
Second node.
Node defining local two axis.
Read and ignore this item. (Must be a number).
Terminate options and read the element data.
n shell elements are input.

Elements are read using format $f . f$ is a

NUMBER

K

MATERIAL
THICKNESS
INCLUDE

NODES

N1
N2
N3
N4
DUMMY
;

BRICKS n

Options:

FORM f

NUMBER

K
MATERIAL
character string up to 80 characters long which has the correct FORTRAN format. All items must be read in floating point format. No more than one element can be specified on a card. If this option is not used then nodal point data is input free format.

Element numbers are to be read. If this option is not used, then element numbers are assigned sequentially.

Element increment K is input.
Material numbers are input.
Thickness of element.
Shell elements are read from file. This option terminates the SHELLS command and reads the shells.

Four nodes are input.
Node 1.
Node 2.
Node 3.
Node 4.
Read and ignore this item.
Terminate options and read the element data.
n brick elements are input.

Elements are read using format $f . f$ is a character string up to 80 characters long which has the correct FORTRAN format. All items must be read in floating point format. No more than one element can be specified on a card. If this option is not used then nodal point data is input free format.

Element numbers are to be read. If this option is not used, then element numbers are assigned sequentially.

Element increment K is input.
Material numbers are input.

INCLUDE

NODES

N1
N2

N3

N4

N5

N6
N7
N8

DUMMY

;

Brick elements are read from file. This option terminates the BRICKS command and reads the brick elements.

Input 8 node numbers.
Node 1.

Node 2.

Node 3.
Node 4.

Node 5.
Node 6.
Node 7.
Node 8.
Read and ignore this item.
Terminate option and read the element data.

8.1 OPTIONS AND FUNCTIONS

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of

Keyword <region> function data
Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:
SI [mat==2] 1 M
C Elements of material 2 are assigned to
C the master side of contact interface 1.

Variables available for function application are as follows:

Variable	Description
x y z	Part local coordinates of node or element center.
xg yg zg	Global coordinates of node or element center.
node	Node number.
mat	Material number.
elem	Element number.

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data

CYLI
Input nc local coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.

Nodes are converted from cylindrical to rectangular coordinates. The equations are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

$\operatorname{LREP} l_{1} l_{2} \ldots l_{n} ;$

MATE matnum
REDUCE

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

The part has material number matnum.
Eliminate unattached nodes which are input in this part.
$\operatorname{REPE} l_{1} l_{2} \ldots l_{n}$

ROTA $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$

SPHE

TEMP t

THIC thic

VELO $v_{x} v_{y} v_{z}$

Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and (v_{x}, v_{y}, v_{z}) defines the axis direction. The angular velocity is w in radians per second.

Nodes are converted from spherical to rectangular coordinates. The equations are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness thic for this part.

Assign initial rigid body velocity to all nodes withinthis parts. (V_{x}, V_{y}, V_{z}) is the global velocity vector. (V_{x}, V_{y}, V_{z}) can be expressed as a function of x, y, z coordinates.

9. MAZE Part

MAZE parts provide simple methods for generating two dimensional cross sections. These sections can then be used as shell elements or as 3-D solids using drag mesh operations. The data in the part is as follows:

PART

Required part data (9.1)
Optional part control commands (9.2)
Optional functions (9.3)
END

9.1 Required Part Data

Each MAZE part requires a set of line definitions followed by a material number and mesh density information. There are many possible methods for describing MAZE parts as:
$L_{1} L_{2} L_{3} L_{4} m t k m \quad$ Define four sided region edges consisting of the intersection lines L_{1}, L_{2}, L_{3}, and L_{4}. This region will have material name mt and will be subdivided in a $k \times m$ element mesh with k elements lying along edges L_{1} and L_{3} and m elements lying along edges L_{2} and L_{4}. Edges must be listed in a counterclockwise order. If k or m are zero, the number of elements are assumed to be one less than the number of points in lines L_{1} or L_{2}, respectively. Points defining the lines then become nodal coordinates.

Define three sided region having edges consisting of the intersecting lines L_{1}, L_{2}, and L_{3}. This region will have material name $m t$ and will be subdivided into $m x(2 k+m)$ elements with $k+m$ elements along edges L_{1} and L_{2} and $2 m$ elements along edge L_{3}. Edges must be listed in a counterclockwise order.

Define three sided region having edges consisting of the intersecting lines L_{1}, L_{2}, and L_{3}. This region will have material name mt and will be subdivided into $m x(2 k+m)$ elements with $k+m$ elements along edges L_{1} and L_{2} and $2 m$ elements along edge L_{3}. Edges must be listed in a counterclockwise order.
$L_{1} L_{2} L_{3} L_{4} m t-k-m r_{1} r_{2}$
$\quad-o r-$
$L_{1} L_{2} L_{3} L_{4} m t-k m r_{1}$
$L_{1} L_{2} L_{3} L_{4} m t k-m \mathrm{r}_{2}$
$L_{1} L_{2} L_{3} L_{4}-m t k m r_{1} r_{2} r_{3} r_{4}$

- $L_{1} L_{2} L_{3} L_{4} m t k m$
$L_{1} L_{2} L_{3} L_{4} m t k m$
etc.

Define four sided region as described above but with variable zoning. Parameters r_{1} and r_{2} are the
ratios of the first segment length to the last segment length along edges 1,3 , and 2,4 respectively.

Define four sided region as described above but with variable zoning. Parameters r_{1} to r_{4} are the ratios of the first segment length to the last segment length along edges 1 to 4 , respectively.

Define four sided region as described above but with a specified number of elements between consecutive points defining the lines whose line numbers are proceeded by a minus sign. For this option to work properly, the first intersection point
must lie either on the first and second point of the line being subdivided. The total number of points used to define the line is equal to p. If desired, not all subdivisions need to be defined. For example, if it is desired to specify the number of subdivisions between the first three points of the first line type. The other segments are equally spaced over the balance of the line.

9.2 Options and Functions

The following part control commands are allowed.

COOR nc data

DRAG

Options:

MOVE n data

ROTA $n p_{x} p_{y} p_{z} q_{x} q_{y} q_{z} \alpha$

RES r

;
$\operatorname{LREP} l_{1} l_{2} \ldots l_{n}$

Input nc local coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.

Perform a drag mesh operation to make solid elements from plane elements.

Form n layers of solid elements by moving the original plane elements to the new location specified by data. Data is described in detail in Coordinate Transformations.

Form n layers of solid elements by rotating the original plane elements about an axis. (p_{x}, p_{y}, $\left.p_{z}\right)$ is any point on the axis of rotation and $\left(q_{x}\right.$, $\left.q_{y}, q_{z}\right)$ is a vector parallel to the axis. The angle of rotation in degrees is α.

The ratio of one element length to the next is r. This applies only to the previous drag operation.

Terminate this command.
Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. (p_{x}, p_{y}, p_{z}) is any point on the axis of rotation and (w_{x}, w_{y}, w_{z}) is the rotation vector in radians per second.

Perform spin operation. The number of layers of nodes is n and the total angle of the part is q in degrees.

STACK $n \mathrm{q}$

TEMP t

THICK t
TRI2 t

TRIA t

VELO $v_{x} v_{y} v_{z}$

Perform stack operation. The number of layers of nodes is n and the total length of the part is θ.

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness t for this part.
All quadrilateral shell elements in this part will be converted to triangular shells. The attached pressure segments, contact segments, etc. will remain as quadrilaterals.

All quadrilateral shell elements in this part will be converted to triangular shells. The attached pressure segments, contact segments, etc. will also be converted to triangles.

Assign initial rigid body velocity to all nodes within this part. $\left(V_{x}, V_{y}, V_{z}\right)$ is the global velocity vector and it can be expressed as a function of x, y, z coordinates.

9.3 Functions

All MAZE part functions have the following form:
Keyword - index specification - parameters

MAZE parts have one type of index specification which is abbreviated as <Mregion>. The input for this index specification is as follows:
$c_{1} c_{2} p_{1} p_{2}$
Four indices can identify any vertex, edge, or surface in the MAZE part. Each MAZE part has either 3 or 4 corners. The first corner is the intersection of the first line and the last line that makes up the part. The second corner is the intersection of the first and second lines. Further corners are defined similarly around the part. The part also has several planes including the original cross section and one more plane for each drag operation. The first corner node reference by <Mregion> is c_{1} and the last corner is c_{2}. The first plane is p_{1} and the last plane is p_{2}. If c_{1} or c_{2} is zero, they take on the minimum and maximum corner numbers respectively. Similarly, if p_{1} or p_{2} is zero, they are assigned the minimum and maximum plane numbers, respectively.

10. EDIT Part

The EDIT part allows loads and boundary conditions to be applied to previously defined parts. It also provides for the performing of system assembly operation from subsystems using system joint commands. The general for of this part is:

EDIT filename

<optional functions>
END

10.1 Options and Functions

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of

Keyword <region> function data

Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:
$\begin{array}{ll}\text { SI }[\text { mat==2] } 1 \mathrm{M} & \begin{array}{l}\text { Clements of material } 2 \text { are assigned to } \\ \text { C the master side of contact interface } 1 .\end{array}\end{array}$
Variables available for function application are as follows:
Variable Description
x y z Part local coordinates of node or element
center.
$x g y g z g$
Global coordinates of node or element
center.

node	Node number.
mat	Material number.
elem	Element number.

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data
Input nc local coordinate systems. Coordinate system data is described in detail in the section on Coordinate Transformations.
rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

LREP $l_{1} l_{2} \ldots l_{n}$

MATE matnum
REPE $l_{1} l_{2} \ldots l_{n}$

ROTA $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$

SPHE

TEMP t

THIC thic
VELO $v_{x} v_{y} v_{z}$

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

The part has material number matnum.
Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. ($p x, p y, p_{z}$) is any point on the axis of rotation and ($v x, v y, v z$) defines the axis direction. The angular velocity is w in radians per second.

Nodes are converted from be to rectangular coordinates. The equations for these transformation are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness thic for this part.
Assign initial rigid body velocity to all nodes within this parts. $\left(V_{x}, V_{y}, V_{z}\right)$ is the global velocity vector. (V_{x}, V_{y}, V_{z}) can be expressed as a function of x, y, z coordinates.

11. DYNA3D Part

The DYNA3D part provides for importing existing DYNA3D input files into LSINGRID. The form of the part is as follows:

For DYNA3D or LS-DYNA3D input files, use:
DYNA3D filename
<optional functions>
END

For VEC-DYNA3D input files, use:
VECDYNA filename
<optional functions>
END
filename is the name of the DYNA3D input file.

11.1 Options and Functions

Functions require the ability to identify groups of nodes and elements in a part and assign various properties. These have the general form of

Keyword <region> function data

Where <region> is a part specific description of where the function is to be applied. For the current part, the nodes or elements through either node or element numbers or through analytical expressions. As an example:
SI [mat==2] 1 M
C Elements of material 2 are assigned to
C the master side of contact interface 1.

Variables available for function application are as follows:

Variable	Description
x y z	Part local coordinates of node or element center.
xg yg zg	Global coordinates of node or element
center. node	Node number.
mat	Material number.
elem	Element number.

The following options are allowed in any order. Additional functions can be applied and are described in the section on Loads and Boundary Conditions.

COOR nc data
system data is described in detail in the section on Coordinate Transformations.

CYLI
Nodes are converted from cylindrical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \\
& Y=R \sin \theta
\end{aligned}
$$

$\operatorname{LREP} l_{1} l_{2} \ldots l_{n}$

MATE matnum
REPE $l_{1} l_{2} \ldots l_{n}$

ROTA $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$

SPHE

TEMP t

THIC thic
VELO $v_{x} v_{y} v_{z}$

Repeat command. This command makes copies of the part in each of the local coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

The part has material number matnum.
Repeat command. This command makes copies of the part in each of the global coordinate systems l_{1} to l_{n}. If the coordinate system number is zero, the part is repeated with no transformation.

Assign an initial rigid body rotation to the part. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the axis of rotation and (v_{x}, v_{y}, v_{z}) defines the axis direction. The angular velocity is w in radians per second.

Nodes are converted from spherical to rectangular coordinates. The equations for this transformation are:

$$
\begin{aligned}
& X=R \cos \theta \sin \varphi \\
& Y=R \sin \theta \sin \varphi \\
& Z=R \cos \varphi
\end{aligned}
$$

The initial temperature of this part is t and it can be expressed as a function of x, y, z coordinates.

Plates have the thickness thic for this part.
Assign initial rigid body velocity to all nodes within this parts. $\left(V_{x}, V_{y}, V_{z}\right)$ is the global velocity vector. (V_{x}, V_{y}, V_{z}) can be expressed as a function of x, y, z coordinates.

12. Loads and Boundary Conditions

Loads and boundary can be applied as optional functions within any of the previously describe parts. The syntax of <Region> can be slightly different depending on which part it is applied in. Refer to the appropriate part for a description of the meaning of <Region>. Alternately, <Region> may be an expression. The local part coordinates for a node are stored as internal variables, $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z}. The current global coordinates of the same node are $\mathbf{x g}, \mathbf{y g}$ and $\mathbf{z g}$. The node number is stored as variable node. Thus, to create slave nodes for sliding interface 6 , the following command may be used:

SFC $[(\operatorname{node}<=55) \$ \$(x>5.0)] 6$
$\mathbf{A C C}<$ Region> lc amp $f_{x} f_{y} f_{z} \quad$-or- \quad Acceleration boundary condition. The load curve
$\mathbf{A C C I}$ <Index Progression> lc amp $f_{x} f_{y} f_{z}$

ACCE acc_name local_node
number is lc. amp is a scale factor and $\left(f_{x} f_{y}, f_{z}\right)$ indicates the load direction.

Definition of accelerometer acc_name. The local node numbers are 1 through 3 .

Options:

N <Point>
$\mathbf{P} p_{x} p_{y} p_{z} m$

B n
;
B <Region> code

The local node is defined by <Point>.
The local node is at point $\left(p_{x}, p_{y}, p_{z}\right)$ in the local coordinate system. m is the rigid body number which is attached to the node.

The local joint node has boundary constraint $n . n$ is a six digit binary number which specifies degrees of freedom to be constrained. Numbering digits from left to right they affect the following degrees of freedom.

1st digit: x-displacement
$=0$ free
$=1$ fixed
2nd digit: y-displacement
3rd digit: z-displacement
4th digit: x-rotation
5th digit: y-rotation
6th digit: z-rotation
Terminate ACCE command.
Boundary condition keyword. Code is a six digit binary number which specifies degrees of freedom to be constrained. Numbering the digits from left to right they affect the following
degrees of freedom
1st digit: x-displacement
$=0$: free
$=1$: fixed
2nd digit: y-displacement
3rd digit: z-displacement
4th digit: x-rotation
5th digit: y-rotation
6th digit: z-rotation
BELT type belt_name local_node
Seat belt definition. This command identifies local node number local_node for item belt_name. Values for type are as follows:
$=$ RETRACTOR: Retractor definition.
=SENSOR: Sensor definition.
=SLIPRING: Slipring definition.

Options:

N <Point>
$\mathbf{P} p_{x} p_{y} p_{z} m$

B n
;
CNV <Region> icv $p_{x} p_{y} p_{z} \quad$-or-
CNVI <Index Progression> icv $p_{x} p_{y} p_{z}$

CSE < Point> n

PO $i j k$
RA <Region>

The local node is defined by <Point>.
The local node is at point $\left(p_{x}, p_{y}, p_{z}\right)$ in the local coordinate system. m is the rigid body number which is attached to the node.

The local node has boundary constraint $n . n$ is a six digit binary number which specifies degrees of freedom to be constrained. Numbering digits from left to right they affect the following degrees of freedom.

1st digit: x-displacement
$=0$: free
$=1$: fixed
2nd digit: y-displacement
3rd digit: z-displacement
4th digit: x-rotation
5th digit: y-rotation
6th digit: z-rotation
Terminate BELT command.
Control volume. This command defines segments for control volume number icv. The segments are facing towards point $\left(p_{x} p_{y}, p_{z}\right)$. (MVMA/DYNA3D, LS-910 and later).

Identify elements for LS-DYNA3D crosssection resultant force calculations on interface n.

Use the element offset from <Point> by (i, j, k).
Ignore <Point> and grab the elements identified

RO im jm km ix jx kx
;
CSN <Region> n

CSY <Region> side -or-
CSYI <Index Progression> side

CV <Region> $l c_{1} h l c_{2} T_{\text {inf }} a \quad$-or- \quad Convection boundary condition for surface CVI <Index Progression> $l c_{1} h l c_{2} T_{i n f} a$
$\mathbf{C V L}<$ Region $>l c_{1} h l c_{2} T_{\text {inf }} a$

EDR $i j k n$
Use the block of elements offset from <Point>. Terminate this command.

Identify nodes for LS-DYNA3D cross-section resultant force calculations on interface n.

Cyclic symmetry interface nodes. side can be MASTER or SLAVE. (VEC/DYNA3D, LS920 and later). segments. $l c_{1}$ is the load curve for the convection coefficient with scale factor h. $l c_{2}$ is the load curve for the ambient temperature with scale factor $T_{\text {in }} . a$ is the exponent in the equation $q=h\left(T-T_{i n f}\right)^{a}$.

Convection boundary condition for edge segments.

Identify elements for deletion during restart
by <Region>. number n. (i, j, k) are the minimum indices of the region in which elements are to be deleted.

Options:

$\mathbf{R O} i_{m} j_{m} k_{m} i_{x} j_{x} k_{x}$
;
EPB <Point>
PO $i j k$
$\mathbf{R O} i_{m} j_{m} k_{m} i_{x} j_{x} k_{x}$
;
$\mathbf{F C}<$ Region> lc $\operatorname{amp} f_{x} f_{y} f_{z} \quad$-or-
FCI <Index Progression> lc amp $f_{x} f_{y} f_{z}$
$\mathbf{F D}$ <Region> lc $\operatorname{amp} f_{x} f_{y} f_{z} \quad$-or-

FDI <Index Progression> lc amp $f_{x} f_{y} f_{z}$

The elements to be deleted are the absolute indices $i_{m}<i<i_{x} j_{m}<j<j_{x}, k_{m}<k<k_{x}$, but offset by (i,j,k).

Terminates this function.
Element Print Blocks.
Use the element offset from <Point> by (i, j, k).
Use the block of elements offset from <Point>. Terminate this command.

Point force. The load curve number is lc. amp is a
scale factor and $\left(f_{x} f_{y}, f_{z}\right)$ indicates the load direction.

Displacement boundary condition. The load curve
number is lc. amp is a scale factor and $\left(f_{x}, f_{y}, f_{z}\right)$ indicates the load direction.

FIND <Point> expr1 expr2 expr3 expr4

FL <Region> lc scal -or-
FLI <Index Progression> lc scal
FN < Region> $e_{\text {fail }}$

The FIND command places the generated coordinates of <Point> into the variables [cenx] [ceny] [cenz] and the node number into [node]. Example:

$$
\begin{gathered}
\text { FIND } 121[\mathrm{bp} 3 \mathrm{x}=\mathrm{cenx}][\mathrm{bp} 3 \mathrm{y}=\text { ceny }] \\
{[\mathrm{bp} 3 \mathrm{z}=\text { cenz }][\mathrm{bp} 3 \mathrm{n}=\text { node }]}
\end{gathered}
$$

Flux boundary condition.

All nodes within <Region> are failure nodes and will fail at strain $e_{\text {fail }}$. Additional nodes are created, shell elements, pressure surfaces, and slide surfaces are renumbered to permit independent motion of adjacent elements (LSDYNA3D).

Failure nodes are a simple method for allowing fracture. Each adjacent element has completely independent nodes. Groups of nodes are initially constrained to move together. When the average strain of adjacent elements reaches the failure strain, the constraint is eliminated and the elements separate.

Set rotational velocity boundary conditions.
Set temperature boundary condition to T and scaleby load curve $l c$.

Set temperature boundary condition to T and scale by load curve $l c$. The scaling is:
(T-Tbase) ${ }^{\text {f }}$ (lc,time).
Velocity boundary condition. The load curve number is lc. amp is a scale factor and $\left(f_{x}, f_{y}, f_{z}\right)$ indicates the load direction.

Geometric contact slave nodes. All identified nodes are slaved to geometric contact entity igeo. (LS-910 and later.)

Define nodes associated with component interface name. (LS-920 and later.)

Define segments associated with component interface name. (LS-920 and later.)

Identify JOY interface nodes. (JOY is an

Eulerian

JOYI <Index Progression>

JT

$j n$

l

Options:

N <Point>

$$
\mathbf{P} p_{x} p_{y} p_{z} m
$$

INC i

B n
;
MKI, MKI+, MKI-
<Index Progression> $m p_{x} p_{y} p_{z}$-or-
MK, MK+, MK-<Region> $m p_{x} p_{y} p_{z}$
hydrocode which exists only at Lawrence Livermore National Laboratory).

Joint command.
Joint definition number.
Local node number (See Figure 2-1).

The local joint node, l, is defined by <Point> in the index space.

The local joint node, l, is at point $\left(p_{x}, p_{y}, p_{z}\right)$ in the local coordinate system. m is the rigid body number which is attached to the node.

Increment $j n$ by i for each copy of the part. $\quad($ default $=$ 1).

The local joint node has boundary constraint n. n is a six digit binary number which specifies degrees of freedom to be constrained.
Numbering digits from left to right they affect the following degrees of freedom.

1st digit: x-displacement
$=0$: free
$=1$: fixed
2nd digit: y-displacement
3rd digit: z-displacement
4th digit: x-rotation
5th digit: y-rotation
6th digit: z-rotation
Terminate joint command.
Surfaces in <Region> or <Index Progression> are assigned marked surface number m.
For MK+ and MKI+ the surface points toward this point. For MK- and MKI- the surface points away from this point. Do not input (p_{x}, p_{y}, p_{z}) for MK or MKI.

Identify marked line number m.
Shell normal orientation command. $\left(p_{x} p_{y}, p_{z}\right)$ is a vector along the element normal vector.

Shell normal orientation command. $\left(p_{x} p_{y}, p_{z}\right)$ is a vector reverse to the element normal vector.

NPB <Point>
Options:
$\mathbf{P O} i j k$
$\mathbf{R O} i_{m} j_{m} k_{m} i_{x} j_{x} k_{x}$
;
NFG <Region> name -or-
NFGI <Index Progression> name
NRB < Region> -or-
NRBI <Index Progression>
$j n$
l

Options:

INC i

B n

Use the node offset from <Point> by (i, j, k).
Use the block of nodes offset for <Point>.
Terminate this command.
Identify nodal force group name.

Identify non-reflecting boundaries.

Define orientation vectors. The orientation vectors are used to specify which axis is to be used for determining the effects of springs and dampers. This particular option is used when two nodes are required for specifying an axis slaved to a body.

Orientation vector number.
Local node number (either 1 or 2).

The local orientation vector node, l, is defined by <Point> in the index space.

The local orientation vector node, l, is at point $\left(p_{x}, p_{y}, p_{z}\right)$ in the local coordinate system. m is the rigid body number which is attached to the node.

Increment $j n$ by i for each copy of the part. (default $=$ $1)$.

The local orientation vector node has boundary constraint $n . n$ is a six digit binary number which specifies degree of freedom to be constrained. Numbering digits from left to right they affect the following degrees of freedom.

1st digit: x-displacement
$=0$: free
$=1$: fixed
2nd digit: y-displacement
3rd digit: z-displacement
4th digit: x-rotation
5th digit: y-rotation
6th digit: z-rotation
Terminate ORV command.

$\mathbf{P M}<$ Region> m	All nodes within <Region> have mass m attached to them.
$\mathbf{P R}<$ Region> -or-	Signifies pressure load command for surface
PRI <Index Progression>	segments.
lc	Load curve or load curve number.
p	Pressure magnitude. Spatial variations may be obtained by inputting p as a function of global coordinates (x, y, z).
$a_{x} a_{y} a_{z}$	$\left(a_{x}, a_{y}, a_{z}\right)$ is a point in the local coordinate system toward which the pressure acts. By specifying $\left(a_{x}, a_{y}, a_{z}\right)$ LS-INGRID knows in which direction the pressure is acting and numbers the pressure card node accordingly.
PRL <Region>	Signifies pressure load command for edge segments.
${ }^{\text {l }}$	Load curve or load curve number.
p	Pressure magnitude.
$a_{x} a_{y} a_{z}$	$\left(a_{x}, a_{y}, a_{z}\right)$ is a point in the local coordinate system toward which the pressure acts. By specifying $\left(a_{x}, a_{y}, a_{z}\right)$ LS-INGRID knows in which direction the pressure is acting and numbers the pressure card node accordingly.
$\mathbf{R B}<$ Region> lc1 f lc $2 t_{\text {inf }}$-orRBI <Index Progression> lc1 f lc $2 t_{\text {inf }}$	Radiation boundary condition.
RBN <Region> set_name	Assign nodes to rigid body node set set_name.
$\mathbf{R E}<$ Region> lc1 T flag -or-	Define a radiation enclosure. $l c l$ is a load curve for emissivity. The temperature of the segment is T if lc $1=0$. flag is "YES" if this surface is to be included in obstructing surface calculations and "NO" otherwise.

Note: If this option is used, segments are oriented so that they face outward from the adjacent conduction elements. An error occurs if radiation segments defined by this command are not adjacent to a conduction element because the outward normal would be indeterminate.
$\mathbf{R E}+<$ Region $>$ lc 1 T flag $p_{x} p_{y} p_{z}$-or-RE- <Region> lc1 T flag $p_{x} p_{y} p_{z}$

Define a radiation enclosure. $l c l$ is a load curve for emissivity. The temperature of the segment is T if lc $1=0$. flag is "YES" if this surface is to be included in obstructing surface calculations
and "NO" otherwise. $\left(p_{x}, p_{y}, p_{z}\right)$ is a point in the local coordinate system toward which the radiation occurs (RE+), or facing the opposite direction
(RE-).
RXN < Region> mat -or-
RXNI <Index Progression> mat
SBI <Region>
idir
$\mathbf{S C}<$ Region> idir\{options\}
Extra nodes for rigid body of material mat.
Define a shell/brick interface. <Region> must be a point or a line in the index space.side $=" b$ ": We are identifying nodes on the brick side of the interface.
$=" s$ ": We are identifying nodes on the shell side of the interface.

Nodes on an interface are in a line parallel to axis idir.
$=I: I$-axis
$=J: J$-axis
$=K: K$-axis
Increments for determining the nodes to be selected along direction dir.

ALE smoothing constraints. idir Smoothing constraints are generated along the line defined by axis idir.
$=I: I$-axis
$=J: J$-axis
$=K$: K-axis

Options:

$\mathbf{1 A i j k}$

1R i j k

2Aijk

2Rijk

PRE
;

The first point of the smoothing constraint is located at absolute indices ($\mathrm{i}, \mathrm{j}, \mathrm{k}$).

The first point of the smoothing constraint is located at absolute indices ($\mathrm{i}, \mathrm{j}, \mathrm{k}$).

The last point of the smoothing constraint is located at absolute indices ($\mathrm{i}, \mathrm{j}, \mathrm{k}$).

The last point of the smoothing constraint is located at absolute indices ($\mathrm{i}, \mathrm{j}, \mathrm{k}$).

Constraints are applied before ALE iterative smoothing is done. (The default requires that the constraints be performed after the smoothing is done.)

Terminate smoothing constraint command.
$\mathbf{S F C}$ <Region> n

SI <Region> -or-
SII <Index Progression>
islid
mslid

SII+ <Index Progression>
islid1
mslid
$p_{x} p_{y} p_{z}$

SI- <Region> -or-
SII- <Index Progression>
islid1
mslid
$p_{x} p_{y} p_{z}$
$\mathbf{S L}$ <Region> n isid

Identify slave nodes for sliding interface n. This is used for interfaces which involve nodes impacting surfaces or to make more precise distinctions between master and slave sides for the merging algorithms.

Identify sliding interfaces.

Sliding interface number
Master/slave flag
=" M ": master surface
$=" S "$: slave surface
Identify sliding interface.

Sliding interface number
Master/slave flag.
$=" M$ ": master surface.
="S": slave surface.
A point in the local coordinate system toward which the sliding interface faces.

Signifies sliding interface command.

Sliding interface number.
Master/slave flag.
$=" M$ ": master surface.
=" S ": slave surface.
A point in the local coordinate system which the sliding interface faces away from.

Define nodes on slide line n. <Region> should be a line in the index space. isid is either "master" or "slave". This command is sometimes useful in conjunction with SI to fix node tolerance problems.

Single point constraints to plane name. xyzxyz is
a binary number which is zero for an unconstrained degree-of-freedom and 1 for a constrained degree-of-freedom. The left three digits are for the translational dof's and the right three are for the rotational.

Define springs or dampers on all nodes within

ORV n

POFF

PON

SCAL s

SW <Region> n-or-
SWI <Index Progression> n
SYSJ
jn
l

Options:

INC i

B n

N <Point>
$\mathbf{P} p_{x} p_{y} p_{z} m$
<Region>. They behave according to spring/damper definition n. isid is used to force nodes to be on opposite side of the definition. isid=" m " for the master side and " s " for the slave side. \{options\} are as follows:

This spring/damper acts along orientation vector n.

Turn element printing off (default).
Turn element printing on.
The spring/damper force is scaled by s.

Slave nodes to stonewall number n.

Joint command.
Joint definition name.
Local node number. Nodes 1 through 3 define the local system for the master side of a joint. Nodes 4 through 6 define the slave side of a joint.

Increment $j n$ by i for each copy of the part. (default $=$ $1)$.

The local joint node has boundary constraint n. n is a six digit binary number which specifies degrees of freedom to be constrained.
Numbering digits from left to right they affect the following degrees of freedom.

1st digit: x-displacement
$=0$: free
$=1$: fixed
2nd digit: y-displacement
3rd digit: z-displacement
4th digit: x-rotation
5th digit: y-rotation
6th digit: z-rotation
The local joint node, l, is defined by <Point> in the index space.

The local joint node, l, is at point $\left(p_{x}, p_{y}, p_{z}\right)$ in the local coordinate system. m is the rigid body number which is attached to the node.

SYSTEM name
;

TH <Region> -or-
THI <Index Progression> thick

TM <Region> t-or-
TMI <Index Progression> t

TN <Region> n -or-
TNI <Index Progression> n
VE <Region>

The local joint node, l, is defined for system name. (Default is the current active system.)

Terminate joint command.

Specify thickness command.
Thickness of plates within the region.

Set initial temperature (TOPAZ) or steady State temperature (DYNA/NIKE) to t.

Set thickness number to n.

Set edge visibility on for outline and phantom edge plotting. <Region> must be a line in the reduced index space.

13. Interactive Commands

After the model is generated, LS-INGRID enters the interactive graphics phase of the program. The x-axis in screen coordinates is fixed relative to the screen and extends horizontally to the viewers right. The y-axis is positive up. The z-axis extends out of the screen towards the viewer.

The following commands are allowed in this phase.

$\mathbf{A J N P} p_{x} p_{y} p_{z}$	Print the nodal point which is nearest to point (p_{x}, p_{y}, p_{z}).
$\mathbf{A M} m_{1} m_{2} \ldots$,	Add materials m_{1}, m_{2}, \ldots (by number) to the active list.
AMN $m_{1} m_{2} \ldots$,	Add materials m_{1}, m_{2}, \ldots (by name) to the active list.
AP $p_{1} p_{2} \ldots ;$	Add parts p_{1}, p_{2}, \ldots to the active list.
ARROW	Toggle arrow plotting on or off. This allows the direction of the tool path to be visualized.
ASCII	Read ASCII tracer particle file.
BPTOL $p_{1} p_{2} t$	The tolerance to be used when merging part p_{1} to p_{2} is t.
CCEN	Select the center of the picture using the mouse.
CCOL $\operatorname{rrg}_{\mathrm{g}}$	Change the (red,green,blue) values of color number i to (r, g, b).
CENT	Moments and products of inertia are determined relative to the centroid and global axes (default).
CHUE $m h$	Change hue of material m to h.
CONT	Finish model generation and format the output file.
CSAT $m s$	Change saturation of material m to s.
D x	Move down distance x relative to the structure.
DI ACCE	Display accelerometers.
DI BELT	Display seat belts.

DI CNV n	Display DYNA3D control volume n.
DI CSEC n	Display DYNA3D force output cross section n.
DI CSYM n	Display cyclic symmetry boundary conditions.
DI CV	Display convection boundary condition. (surface segments).
DI CVL	Display convection boundary condition. (edge segments).
DI D $l c$	Display forced displacements associated with load case (or load curve) $l c$.
DI DETP	Display detonation points.
DI DS $n_{1} n_{2} \ldots$;	Display digitized surface definitions $n_{1}, n_{2} \ldots$
DI DSAD $n_{1} n_{2} \ldots$;	Display digitized surfaces and add definitions $n_{1}, n_{2} \ldots$ to the display list.
DI DSRM $n_{1} n_{2} \ldots$;	Display digitized surfaces and remove definitions $n_{1}, n_{2} \ldots$ from the display list.
DI DX	Display X-translational boundary conditions.
DI DY	Display Y-translational boundary conditions.
DI DZ	Display Z-translational boundary conditions..
DI EDR n	Display elements to be deleted on restart n.
DI EPB	Display element print blocks.
DI F $l c$	Display point loads associated with load case (or load curve) lc.
DI FL	Display flux boundary conditions; (edge segments).
DI FLUX	Display flux boundary condition; (surface segments).
DI FSYM	Display failing symmetry planes.
DI INTF name	Display component substructure name.
DI JOY	Display joy interface nodes.
DI JTS	Display joints.
DI L3D	Display three-dimensional line definitions.

DI LAX code	$\begin{array}{cll} \text { Display local axes. } & \\ \text { code }=" R ": & \text { local } R \text {-axis } \\ \text { code }=" S ": & \text { local } S \text {-axis } \\ \text { code }=" T ": & \text { local } T \text {-axis } \\ \text { code }=" R S ": & \text { local } R S \text {-axes } \\ \text { code }=" S T ": & \text { local } S T \text {-axes } \\ \text { code }=" T R ": & \text { local } T R \text {-axes } \\ \text { code }=" R S T ": & \text { local } R S T \text {-axes } \\ \text { code }=" C O R I ": & \text { local composite angles } \end{array}$
DI M $m_{1} m_{2} \ldots$;	Materials m_{1}, m_{2}, \ldots are to be highlighted during plotting.
DI MCG m	Display mass properties of individual materials.
DI MK m	Display marked surface m.
DI NCV	Display NURB curves.
DI NFG	Display nodal force groups.
DI NRB	Display non-reflecting boundaries.
DI NPB	Display nodal print blocks.
DI NSF	Display NURB surfaces.
DI NV	Display shell element normal vectors.
DI ORV	Display orientation vectors.
DI OUTL	Display free edges of shells.
DI P $p_{1} p_{2} \ldots$;	Parts p_{1}, p_{2}, \ldots are to be highlighted during plotting.
DI PL $l c$	Display pressure surfaces associated with load case (or load curve) $l c$; (edge segments).
DI PM	Display point masses.
DI PR $l c$	Display pressure surfaces associated with load case (or load curve) $l c$; (surface segments).
DI PV n	Display tool path n.
DI RB	Display radiation boundary conditions. (surface segments).
DI RBL	Display radiation boundary conditions; (edge segments).
DI RBN	Display nodal rigid bodies. (LS-910 and later).

DI RE

DI REL
DI RX
DI RXN m

DI RY
DI RZ
DI SBI
DI SFC islid mslid

DI SI islid mslid

DI SL n isid

DI SPC

DI SPD
DI SW s
DI SY isym
DI SYSJ isym
DI TB
DI TI
DI TRACER
DI VB $l c$

DI VECT c

Display radiation enclosure; (surface segments).
Display radiation enclosure. (edge segments)
Display X-rotational boundary conditions.
Display extra nodes slaved to rigid body material m.

Display Y-rotational boundary conditions.
Display Z-rotational boundary conditions.
Display shell/brick interfaces.
Display nodes which are part of sliding interface definition islid.
mslid $=$ " M ": display master side.
mslid = "S": display slave side.
mslid $=" B$ ": display both sides.
Display slide surface islid; (surface segments).
mslid = " M ": display master side
mslid = "S": display slave side
mslid = " B ": display both sides
Display slide line n; (edge segments).
mslid = " M ": display master side.
mslid $=" S$ ": display slave side .
mslid = "B": display both sides.
Display single point constraints.
Display springs and dampers.
Display stonewall s.
Display symmetry plane isym.
Display symmetry plane isym.
Display temperature boundary conditions.
Display temperature initial conditions.
Display tracer particles.
Display velocity boundary conditions associated with load curve $l c$.

Display vectors of component c.
$c=$ IV: initial velocity
$c=$ IR: initial rotational velocity
$c=$ IDV: initial distortional velocity
$c=\mathrm{IRB}:$ initial rigid body velocity
$c=\mathrm{V}:$ current velocity
$c=\mathrm{DV}:$ current distortional velocity
$c=\mathrm{RB}:$ current rigid body velocity
$c=\mathrm{A}:$ current acceleration

DI WARP ang
DIAD

DICOL 1

DIOFF
DM $m_{1} m_{2} \ldots$,

DMN $m_{1} m_{2} \ldots$,

DMEM
DRAW
DSV
$\operatorname{DSVS} d_{1}, d_{2}, \ldots d_{n} ;$
$\operatorname{DSAD} d_{1}, d_{2}, \ldots d_{n} ;$
$\operatorname{DSRM} d_{1}, d_{2}, \ldots d_{n} ;$

ELPLT on/off

EXIT
FOLD $n d$

Display shells with warp angles that exceed ang.
This can be used in any of the above commands instead of DI. If this is used, then the display request is in addition to the previous ones rather than replacing them.

Following DI and DIAD options are to be performed using color number 1 . Valid numbers for 1 are 1 through 7 .

Turn off display options.
Delete materials m_{1}, m_{2}, \ldots (by number) from active display list.

Delete materials m_{1}, m_{2}, \ldots (by name) from active display list.

Dump memory allocations statistics.
Draw the mesh. All mesh lines are plotted.
View three-dimensional digitized surfaces.
View digitized surfaces $d_{1}, d_{2} \ldots$
Add digitized surfaces $d_{1}, d_{2} \ldots$ to the active display list.

Remove digitized surfaces $d_{1}, d_{2} \ldots$ from the active display list.

Turn element number plotting on or off. The default is off.

Exit LS-INGRID now.
Airbag folding. All nodes of the model are included in the fold operation. Fold definitions 1 through n are applied in ascending order. d is an optional thickness which can be used to increase the fold thicknesses. The maximum of d and the fold definition specified thickness is used.

Reference frame with tick marks plotted
(default).

GRID

INFO
L x
L3V
$\mathbf{L 3 V S} l_{1}, l_{2}, \ldots l_{n}$;
LCV n
LIGHT $p_{x} p_{y} p_{z}$

LMIN 1

LSIZE

LV
LVI $m n$
$\mathbf{L V S} l_{1}, l_{2}, \ldots l_{n} ;$
$\mathbf{M} m_{1} m_{2} \ldots$,

MCOL

MMASS

$\mathbf{M N} m_{1} m_{2} \ldots$,
MPLT
MSIZ

NCV ;

NCV $d_{1}, d_{2}, \ldots d_{n} ;$
$\operatorname{NCAD} d_{1}, d_{2}, \ldots d_{n} ;$

Displays will be overlaid by a grid of orthogonal lines. (Two dimensional plots only).

Print information on the mesh size.
Move left a distance x relative to the structure.
View three dimensional digitized surfaces.
View all three-dimensional lines l_{1}, l_{2}, \ldots
View load curve n.
Locate the light source for continuous color plots at $\left(p_{x} p_{y}, p_{z}\right)$.

Set minimum luminosity for continuous color plots to 1 .

On/off switch for printing extent of active threedimensional line definitions during plotting.

Display all two-dimensional line definitions.
Display lines m to n.
Display lines l_{1}, l_{2}, \ldots
Display materials m_{1}, m_{2}, \ldots (by number).
Color plots based on element materials. (See also PCOL).

This is the same as TMASS except that the calculation is only performed for the active materials.

Display materials m_{1}, m_{2}, \ldots (by name).
Plot mass properties on screen.
Print the extent of the current active material subset.

View all NURB curves.
View NURB curves $d_{1}, d_{2} \ldots$
Add NURB curves $d_{1}, d_{2} \ldots$ to the active display list.
$\operatorname{NCRM} d_{1}, d_{2}, \ldots d_{n} ;$

NDPLT on/off

NOFRAME
NOGRID

NSET $n x y z$
NSV ;
$\mathbf{N S V} d_{1}, d_{2}, \ldots d_{n} ;$
$\operatorname{NSAD} d_{1}, d_{2}, \ldots d_{n} ;$
$\operatorname{NSRM} d_{1}, d_{2}, \ldots d_{n} ;$

OVERLAY $n x y z$
$\mathbf{P} p_{1} p_{2} \ldots ;$

PCHK

PCOL

PFOLD $n d p_{1} p_{2}$

PINF

PMASS

POOR

Remove NURB curves $d_{1}, d_{2} \ldots$ from the active display list.

Turn node number plotting on or off. The default is off.

No reference frame is plotted.
Displays will not be overlaid by a grid of orthogonal lines. (Default).

Set the coordinates of node n to (x, y, z).
View all NURB surfaces.
View NURB surfaces $d_{1}, d_{2} \ldots$
Add NURB surfaces $d_{1}, d_{2} \ldots$ to the active display list.

Remove NURB surfaces $d_{1}, d_{2} \ldots$ from the active display list.

Stop screen erasing of previous picture so that the next picture is overlaid.

Display parts p_{1}, p_{2}, \ldots To display all parts simply type " $P ; "$. The ";" is also optional so that the command "P 1 VIEW" would show part one on the screen.

Turn on checking of penetrations in the single surface contact algorithms. Currently, this is only designed to work with the airbag folding capability. Repeating this command will turn the option off. Penetrations are graphically displayed.

Color plots based on element parts. This is the default. (See also MCOL).

This is the same as the FOLD command except that only parts p_{1} through p_{2} are treated rather than the entire mesh.

Print information on each part.
This is the same as TMASS except that the calculation is only performed for the active parts.

Poor man's hidden line algorithm.

PRINT v

PSRGB
PTOL $n t$

PV
PVS $p_{1} p_{2} \ldots p_{n} ;$
QUIT
R x
REDUCE

REFP $r_{x} r_{y} r_{z}$

RESO ires

REST

Note: The local coordinates are fixed to the model and rotate as the model rotates.

RLX θ

RLY θ
RLZ θ
$\mathbf{R M} m_{1} m_{2} \ldots$,

RMN $m_{1} m_{2} \ldots$,
$\mathbf{R P} p_{1} p_{2} \ldots$;
RX θ

RY θ

Echo the value of v back to the terminal. This is most frequently used with the calculator program. (e.g. "PRINT [SQRT(27)*24.3]")

Create a RGB Postscript file.
Set the tolerance for part n to t. See also " T " and "TP".

View tool paths.
View tool paths p_{1}, p_{2}, \ldots
Quit LS-INGRID now.
Move right a distance x relative to the structure.
Eliminate exterior faces which have become interior faces due to the tolerance command.

Moments and products of inertia are determined relative to the point (r_{x}, r_{y}, r_{z}) and global axes.

Set the Z-buffer resolution to ires for the VIEW command. ires is limited to one of 256,512 , $1024,2048,4096,8192$. (The default is 1024).

Restore all rotations to their initial settings.

Rotate the body θ degrees about the local x-axis.
Rotate the body θ degrees about the local y-axis.
Rotate the body θ degrees about the local z-axis.
Remove materials m_{1}, m_{2}, \ldots (by number) from the active list.

Remove materials m_{1}, m_{2}, \ldots (by name) from the active list.

Remove parts p_{1}, p_{2}, \ldots from the active list.

Rotate body θ degrees about the x-axis in the screen coordinates. A positive rotation is counterclockwise.

Rotate body θ degrees about the y-axis in the screen coordinates. A positive rotation is counterclockwise.

RZ θ

SCALE s

SCOL

SEAL name
SEAL CIRCLE

SEAL OFF

SEAL OUTLINE
SHRINK s

SIZE

STOP
T tol

TMASS

TP tol

TRIAD on/off

TRPT

TTIME

Rotate body θ degrees about the z-axis in the screen coordinates. A positive rotation is counterclockwise.

Multiply the mesh size by s. Default is 1.0.
Color plots based on system name; (see also MCOL and PCOL).

Seal airbag edges which are marked with name.
Seal the airbag periphery. The airbag mesh is assumed to be circular in the $x-y$ plane and centered along the z-axis at $z=0$; (default).

Turn off airbag sealing options.
Seal the free edges of an airbag.
Shrink individual elements by s when plotting. This is used to see if there are any holes in the mesh.

Print the range of coordinates in the current active part list.

Exit the program immediately.
Remove duplicate nodes within a distance tol. This command will not eliminate coincident nodes on opposite sides of slide surfaces or joints.

Calculate the total mass of the model. Mass densities must be input using the MAT command. This command also calculates kinetic energy, linear momentum, volume, moments of inertia, and the centroid.

Remove duplicate nodes within a distance tol and print the number of nodes merged between any two parts.

Show the coordinate system triad on the screen when doing three-dimensional plots. The default is on.

On/off flag for printing timing statistics from plot commands.

Plot time histories of tracer particles. (See also ASCII TRACER.) comp is one of the following components:
$=\mathrm{SX} \quad-->\sigma_{\mathrm{xx}}$

$$
\begin{aligned}
& \text { =SY --> } \sigma_{y y} \\
& =\mathrm{SZ} \quad \text {--> } \sigma_{\mathrm{Zz}} \\
& =\text { SXY } \quad-->\sigma_{x y} \\
& \text { = SYZ --> } \sigma_{y z} \\
& =\mathrm{SZX} \quad-->\sigma_{\mathrm{Zx}} \\
& =\mathrm{P} \quad \text {--> Pressure } \\
& \text { = EFP --> Effective Plastic Strain } \\
& =\text { RHO --> } \rho \\
& \text { = RVOL --> Relative Volume }
\end{aligned}
$$

TV n
$\mathbf{U} x$
UPDATE
$\operatorname{VEOS} n V_{1} V_{2}$

VIEW or G

WBGR

WBIF

WRDB

WTDB
ZIN

ZOUT

Select graphics device n. Available graphics devices are dependent on the installation. When typing this option, LS-INGRID will prompt the user for the correct device and provide a list of available devices.

Move up a distance x relative to the structure.
Re-read the LS-INGRID input deck and return to the interactive phase for continued plotting.

View equation of state for material n from relative volume V_{1} to relative volume V_{2}.

View the mesh. An algorithm based on a z buffer method is used for hidden line processing.

Write the boundary grid into the LS-INGRID output file. For a solid grid, all internal polygons are removed and the external polygons are written out.

Write the boundary information file, grfinfo for use by POST.

Write reduced TAURUS database. This option only writes out surface polygons.

Write TAURUS database.
Zoom in on the picture by selecting the upper and lower corners with the mouse.

Zoom out on the picture by selecting the upper and lower corners with the mouse.

13.1 Exploded View Commands

Exploded view commands permit collections of parts or materials to be moved from their generated locations. Exploding a model will affect the graphics and mass property calculations, but will not affect the output computational model. Exploding a model with respect to parts will only affect the TMASS and PMASS commands, while exploding with respect to materials will only affect the MMASS command.

MEXP

MLOC data

MMOV data

MSEL $m_{1} m_{2} \ldots$;

NEXP
PEXP

PLOC data

PMOV data

PSEL p_{1}, p_{2}, \ldots;

Exploded views are performed with respect to materials. This command is automatically invoked by all other material explode commands.

Set position of material subset to the position specified in data. Data is described in the section on Coordinate Transformations.

Shift the position of material subset by the transformation specified in data. Data is described in the section on Coordinate Transformations.
Select material subset $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots$; for explode operations.

Turn off exploded view option.
Exploded views are performed with respect to parts. This command is automatically invoked by all other part explode commands.

Set position of part subset to the position specified in data. Data is described in the section on Coordinate Transformations.

Shift the position of part subset by the transformation specified in data. Data is described in the section on Coordinate Transformations.

Select part subset p_{1}, p_{2}, \ldots; for explode operations.

13.2 TAURUS/Post-Processing Commands

The post-processing phase of LS-INGRID allows for the generated models to be displayed in their deformed configurations with a variety of boundary conditions or other graphical information superimposed. Some time history facilities are also included.

TAURUS file

ALAB label

ALAB OFF

ASCL scale
ASET min max
DSF d
DTS $s_{1} s_{2}$
GTIME comp ;

LS
LTS
NTIME $\operatorname{comp} n_{1} n_{2} \ldots$;

NTIME comp ;

OLAB label
OLAB OFF
OSCL scale
OSET min max
$\mathbf{R E P} s_{1} s_{2} k$

Sn

Read TAURUS database file.
Set abscissa label.
Use default abscissa label.
Set abscissa scale factor.
Set abscissa range.
Set displacement scale factor to d; (default=1.0).
Delete states s_{1} through s_{2}.
Plot global component comp. Components are defined in table 13.2.1.

Last state.
List time states.
Plot nodal component comp for nodes n_{1}, n_{2}, \ldots
Components are defined in table 13.2.2.
Plot nodal component comp for the previously used nodal list. Components are defined in table 13.2.2.

Set ordinate label.
Use default ordinate label.
Set ordinate scale factor.
Set ordinate range.
Execute the next plot command from states s_{1} to s_{2} by increment state increment k.

Select state number n.
Plot the generated geometry.
Increment the state number by n.

Table 13.2.1

Global Time History Components

ENERGY
MOMENTUM
XVEL
YVEL
ZVEL
INTERNAL
KINETIC
TOTAL

Plot the total, kinetic and internal enegy.
Plot the momentum vector.
X-momentum/total mass.
Y-momentum/total mass.
Z-momentum/total mass.
Internal enegy.
Kinetic enegy.
Total enegy.

Table 13.2.2
Vector Plot Components

A	Current acceleration.
DV	Current distortional velocity.
IDV	Initial distortional velocity.
IR	Initial rotational velocity.
IRB	Initial rigid body velocity.
IV	Initial velocity.
RB	Current rigid body velocity.
V	Current velocity.

Table 13.2.3
Nodal Time History Components

Rectangular coordinates:
Y
Z
AX
AY
AZ
DX
DY
DZ
VX
VY
VZ
Cylindrical coordinates:
CR
CT
CZ
CAR
CAT
CAZ
CDR
CDT
CDZ
CVR
CVT
CVZ
Spherical coordinates:
SR
ST
SP
SAR
SAT
SAP
SDR
SDT
SDP
SVR
SVT
SVP
Special components:
TEMP
TIME
TOTP
TOTA
TOTD
TOTV

X-position
Y-position
Z-position
X-acceleration
Y-acceleration
Z-acceleration
X-displacement
Y-displacement
Z-displacement
X-velocity
Y-velocity
Z-velocity
Radial-position
Circumfirential-position
Axial-position.
Radial-acceleration
Circumfirential-acceleration
Axial-acceleration
Radial-displacement
Circumfirential-displacement
Axial-displacement
Radial-velocity
Circumfirential-velocity
Axial-velocity
Radial-position
Theta-position
Phi-position
Radial-acceleration
Theta-acceleration
Phi-acceleration
Radial-displacement
Theta-displacement
Phi-displacement
Radial-velocity
Theta-velocity
Phi-velocity
Temperature
Time
Total position
Total acceleration
Total displacement
Total velocity

14. Two-Dimensional Line Definitions

Two-dimensional line definitions are lists of $r, z(x, y)$ points which form a piecewise linear curve. Each line definitions has a number.
$\mathbf{L A D} r_{c} z_{c} t$
$\operatorname{LADD} l_{1} s l_{2} t$

LADV $l d r d z$
$\mathbf{L A P} r_{1} z_{1} r_{c} z_{c}$

LAR $r_{1} z_{1} R$

LAT $r_{1} z_{1} r_{2} z_{2} R$
$\mathbf{L C C} n r_{c} z_{c} t_{1} t_{2} r_{1} \ldots r_{n}$

LD n

Define a circular arc centered at point $\left(r_{c}, z_{c}\right)$, beginning at the last point defined and sweeping through t degrees. Positive t is assumed to be counterclockwise.

Define line definition l as a linear combination of line definitions l_{1} and $l_{2} . l=s^{*} l_{1}+t^{*} l_{2}$.

Add vector $(d r, d z)$ to line definition l.
Define a circular arc by specifying points. The arc is assumed to begin at the last point defined and to end at $\left(r_{1}, z_{1}\right)$. Point $\left(r_{c}, z_{c}\right)$ lies at the center of the arc.

Define a circular arc by specifying radius. An arc of radius R is assumed to begin at the last point defined and to end at $\left(r_{1}, z_{1}\right)$. If R is positive, the center of the arc lies to the left as one moves from the last point defined to $\left(r_{1}, z_{1}\right)$. If R is negative, the center of the arc will be to the right.

Define a circular arc of radius R tangent to the last line segment and a line segment joining point $\left(r_{1}, z_{1}\right)$ to point $\left(r_{2}, z_{2}\right)$. These line segments will be automatically extended or truncated at the tangency point.

Define n lines consisting of circular arcs centered at point $\left(r_{c}, z_{c}\right)$ that sweep from angle t_{1} to $t_{2} . r_{1} r_{2}, \ldots r_{n}$ are the radii of the next n lines. Line numbers are assigned by LSINGRID beginning with the next available number.

Begin line definition n.

LEP $a b r_{c} z_{c} t_{1} t_{2} p$
$\operatorname{LEXP} r(s) z(s) n$

LINT $l_{1} l_{2} s$
$\mathbf{L O} m r_{1} z_{1} r_{2} z_{2}$

LOD $m d$
$\mathbf{L P} n r_{1} z_{1} \ldots r_{n} z_{n}$
$\mathbf{L P I L} l_{1} l_{2}$
$\mathbf{L P T} r_{1} z_{1} r_{2} z_{2} R$

LPTA $r_{c} z_{c} R$

Define an elliptical arc by the semi-major and semi-minor axes, a and b respectively, the center point (r_{c}, z_{c}), and a sweep from angle t_{1} to angle t_{2} as measured from the major axis.
Angle p is the angle between the major axis and the r-axis. A circular arc is generated by setting $a=b$. Positive angles represent counterclockwise rotations.

Define a line definition using expression $r(s)$ and $z(s)$ where $0 \leq s \leq 1$. The number of points to be used is n.

The current line definition is formed by interpolation between line definition l_{1} and line definition l_{2}. The equation is $l=s^{*} l_{1}+(l-s)^{*}$ l_{2}.

Define a line segment for line n by offsetting a segment of line m such that the first point of the new segment begins at $\left(r_{1}, z_{1}\right)$ and the last point terminates at $\left(r_{2}, z_{2}\right)$.

Define a line segment for line n by offsetting the entire line m a distance d. Positive d offsets the line segments to the left as one moves along line m in the direction that was originally defined. Negative d offsets the segment to the right.

The line definition consist of n points.
Define point for line n at the intersection point of lines l_{1} and l_{2}.

Define a circular arc of radius R beginning at the last point defined and tangent to a line segment joining point $\left(r_{1}, z_{1}\right)$ to point $\left(r_{2}, z_{2}\right)$. This line segment will be extended or truncated to begin at the tangency point.

Define a line segment beginning at the last point defined and terminating at the tangency point on an arc of radius R centered at $\left(r_{c}, z_{c}\right)$. The first tangency point encountered as the arc is generated by a counterclockwise rotation from the r-axis will become the end point. If R is given as a negative number, a clockwise rotation from the r-axis will determine the first tangency point.
$\mathbf{L R L} n r_{c} z_{c} L t_{1} \ldots t_{n}$

LROT $l t$

LSCA $l s$
LSCR $l s$
LSCZ $l s$
$\mathbf{L S T L} m d_{r} d_{z}$
$\mathbf{L T} n d_{r} d_{z}$
LTAS $r_{1} z_{1} \operatorname{rot} r_{2} z_{2} R$
$\mathbf{L T B C} m t d t r_{1} r_{2} \ldots r_{m}$
$\mathbf{L T B O} m_{1} d_{1} m_{2} d_{2} \ldots m_{m} d_{m}$

LTP $r z R$

Define n lines consisting of radial lines of length L originating at point $\left(r_{c}, z_{c}\right)$ and oriented at angles $t_{1} \ldots t_{n}$. Positive angles are measured counterclockwise from r-axis.

Rotate line definition l about the origin t degrees.

Scale line definition l by s.
Scale r-coordinates of line definition l by s.
Scale z-coordinates of line definition l by s.
Define a line segment for line n by translating line m an increment $\left(d_{r}, d_{z}\right)$.

Translate line n by the increment $\left(d_{r}, d_{z}\right)$.
Define a line segment tangent to a circular arc centered at point $\left(r_{1}, z_{1}\right)$, beginning at the last point defined, and sweeping counterclockwise if rot $=1$ and clockwise if rot $=-1$. The line segment terminates at its tangency point on a second arc of radius R centered at $\left(r_{2}, z_{2}\right)$. The first tangency point encountered as the second arc is generated by a counterclockwise rotation from the r-axis will become the end point. If R is given as a negative number; a clockwise rotation from the r-axis will determine the tangency point.

Define a line segment for line n with tab cell data. Tab cell data is often used in drafting programs, and consist of m radii each $d t$ degrees apart starting at angle t. Each radius is scaled by s. Positive angles represent counterclockwise rotations.

Define a line segment for line n by offsetting last line defined with the "LTBC" or "LTBO" command. The radii of the first m_{1} points are offset d_{1}, the next m_{2} by d_{2}, and so on. Note that $m=m_{1}+m_{2}+\ldots m_{m}$ where m comes from the last "LTBC" command.

Define a circular arc of radius R tangent to the last line segment and terminating at point (r, z). The last line segment will be automatically extended or truncated to the tangency point.

Define a line segment vector of length l,
or
$\mathbf{L V C r} r_{1} z_{1} t 1$
$\mathbf{L V C} r_{2} z_{2} t-1$

RLN

RLNS
oriented
at t degrees (positive counterclockwise from the r-axis). If this is the first command in a new line, the origin (r, z) must be given (second or third forms). A negative 1 indicates that the second point is defined, i.e., that the vector points towards the first point.

Read next line definition in operational input file and assign the next available line number.

Read all line definitions in operational input file and assign the next available line numbers.

15. Three-Dimensional Line Definitions

Three-dimensional line definitions are lists of x, y, z points which form a piecewise linear curve. Each line definition has a name which is a character string with up to eight characters.

```
AVGN l}\mp@subsup{l}{1}{}\mp@subsup{l}{2}{}\ldots\mp@subsup{l}{n}{}
BLEN s
```

$\operatorname{COMP} l_{1} l_{2} \ldots l_{n} ;$

COPY n data

L2D n data

L3D n
$\operatorname{LAD} x_{c} y_{c} a$
$\operatorname{LADD} l_{1} s_{1} l_{2} s_{2}$
LBCX $l r f$

Average n line definitions.
Determine a line interpolated between surface definition s_{1} and s_{2} by a ratio $p . s_{3}$ and s_{4} determine the end points of the line and the line lies on s5. Convergence can be improved by using the following: PO for (s_{1}, s_{3}, s_{5}), P1 for $\left(s_{1}, s_{4}, s_{5}\right), \mathrm{P} 2$ for $\left(s_{2}, s_{4}, s_{5}\right), \mathrm{P} 3$ for $\left(s_{2}, s_{3}, s_{5}\right)$. Refer to Figure 14-1.

Form a single line definition by placing line definitions $l_{1} l_{2} \ldots l_{n}$ end-to-end.

Move line definition n using the transformation defined by data. Input for data is described in the section on Coordinate Transformations.

Turn two-dimensional line definition n into a three dimensional line definition. The line definition is initially assumed to lie in the $x-y$ plane and can be moved anywhere in space using data which is described in Coordinate Transformations.

Begin line definition n.
Form an arc about a z-vector located at $\left(x_{c}, y_{c}\right)$ beginning at the last point defined and sweeping through a degrees.

Make a linear combination: $l_{\text {new }}=l_{1} * s_{1}+l_{2} * s_{2}$.
Ball-correct line definition l with a cylinder parallel to the x-axis with radius r. If the correction is to the left then f is 'left', otherwise f is 'right'.

Ball-correct line definition l with a cylinder parallel to the y-axis with radius r. If the correction is to the left then f is 'left', otherwise f is 'right'.

Ball-correct line definition l with a cylinder
$\mathbf{L B C V} \operatorname{lr} v_{x} v_{y} v_{z}$

LCUT l opt dist
$\operatorname{LEXP} x(s) y(s) z(s) n$

LFOR l opt vd sd dir

LINT $l_{1} l_{2} s$
$\operatorname{LLCM} l_{1} s_{1} \ldots l_{n} s_{n} ;$
$\mathbf{L P} n x_{1} y_{1} z_{1} \ldots x_{n} y_{n} z_{n}$
LPN $n p_{x} p_{y} p_{z}$
parallel to the z-axis with radius r. If the correction is to the left then f is 'left', otherwise f is 'right'.

Ball-correct line definition l with a cylinder parallel to the vector, (v_{x}, v_{y}, v_{z}), with radius r. If the correction is to the left then f is 'left', otherwise f is 'right'.

Cut line definition l with a plane normal to axis opt (opt $=X, Y$ or Z) at a distance of dist from the origin. The results are stored into calculator variables (13cenx, 13ceny, 13cenz). They may then be accessed and used as necessary.

Define a line definition using expression $x(s)$, $y(s)$ and $z(s)$ where $0 \leq s \leq 1$. The number of points to be used is n.

Form line definition l. If a point on l is inside ($\mathrm{opt}=\mathrm{IN}$) or outside ($\mathrm{opt}=\mathrm{OUT}$) of surface definition vd, then it is projected onto surface definition sd. The projection is constrained by dir:
dir=0: project to nearest point.
dir=1: project along X-axis
dir=2: project along Y-axis
dir=3: project along Z-axis
Form a line by linear interpolation between l_{1} and l_{2} with parameter s.

Form a linear combination of n lines where $\operatorname{lnew}(r)=l_{1}(r)^{*} s_{1}+\ldots+l_{n}(r)^{*} s_{n}$.

The line definition consists of n points.
The next point on the line definition is at ($p_{x} p_{y}, p_{z}$) but n equal spaced points in a straight line are added to make up this segment.

Project line definition l onto surface definition s.
Reverse the direction of the line. Additions to the line definition will occur at the beginning of the line rather than the end of the line.

Sharp corners on line definitions l are rounded by a cylinder parallel to the x-axis with radius r. The coordinates of the center of rotation of the last round are returned to calculator variables (13cenx, 13 ceny, 13 cenz) and the last angle of sweep

	is returned to 13angle.
LRNY $l r$	Sharp corners on line definitions l are rounded by a cylinder parallel to the y-axis with radius r. The coordinates of the center of rotation of the last round are returned to calculator variables (13cenx, 13 ceny, 13 cenz) and the last angle of sweep is returned to l3angle.
LRNZ $l r$	Sharp corners on line definitions l are rounded by a cylinder parallel to the z -axis with radius r. The coordinates of the center of rotation of the last round are returned to calculator variables (13cenx, 13 ceny, 13 cenz) and the last angle of sweep is returned to l3angle.
LRNV $l r v_{x} v_{y} v_{z}$	Sharp corners on line definition 1 are rounded by a cylinder parallel to the vector, $\left(v_{x}, v_{y}, v_{z}\right)$, with radius r. The coordinates of the center of rotation of the last round are returned to calculator variables (13cenx, 13 ceny, l3cenz) and the last angle of sweep is returned to 13angle.
$\mathbf{L R O T} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} \mathrm{~W}$	Form an arc by taking the last point and rotating it an angle w (in degrees) about the axis defined by point $\left(p_{x} p_{y}, p_{z}\right)$ and orientation vector $\left(v_{x}, v_{y}, v_{z}\right)$.
LVT d	Add a vector tangent to the last line segment with length d.
LVTB d	Add a vector tangent to the first line segment with length d.
P0 $x_{0} y_{0} z_{0}$	Set point P0 for intersection.
P1 $x_{1} y_{1} z_{1}$	Set point P1 for intersection determination on the next command.
$\mathbf{P} 2 x_{2} y_{2} z_{2}$	Set point P 2 for intersection determination on the next command.
P3 $x_{3} y_{3} z_{3}$	Set point P3 for intersection determination on the next command.
PINT $s_{1} s_{2} s_{3}$	The next point on the line is at the intersection of s_{1}, s_{2} and s_{3}. P0 can be used to improve convergence. The results of the projection are returned to the calculator variables (13cenx, 13 ceny, 13 cenz).
PPRJ $p_{x} p_{y} p_{z}$ surf	The next point on the line definition is formed

by projecting $\left(p_{x}, p_{y}, p_{z}\right)$ to the nearest point on surface surf.

Determine the curve formed by the intersection of s_{1} and s_{2} beginning at s_{3} and terminating at s_{4}. If this is not the first point on the line, then s_{3} is not input and LS-INGRID assumes that the last point defined lies on the intersection of s_{1} and s_{2}. The convergence can be improved by using P0 for $\left(s_{1}, s_{2}, s_{3}\right)$ and P1 for $\left(s_{2}, s_{3}, s_{4}\right)$.

16. Surface Definitions

This section describes options for defining three-dimensional curved surfaces. Analytical representations of the surfaces are stored, if possible, so that exact projections can be made.
$\operatorname{BLND} d_{1} l_{1} d_{2} l_{2}$
$\mathbf{C N 2 P} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r_{1} z_{1} r_{2} z_{2}$

CONE $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r \theta$

CP data 1
$\mathbf{C R} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} l$

CRX, CRY, or CRZ l
$\operatorname{CYLI} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r$
$\operatorname{ER} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r_{1} r_{2}$

The surface is blended between line definition 1_{1} and line definition l_{2}. Initially the line definitions are in the $x-z$ plane at $y=0$. Line definitions are moved by d_{1} and d_{2} which are described in Coordinate Transformations.

Define a conical surface by specifying the axis and two points. $\left(p_{x} p_{y}, p_{z}\right)$ is a point on the axis and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector which orients the axis. radial and axial positions relative to the center point are $\left(r_{1}, z_{1}\right)$ and $\left(r_{2}, z_{2}\right)$.

Define a conical surface by specifying an axis, a radius and an angle. $\left(p_{x}, p_{y}, p_{z}\right)$ is a point on the axis where the cone has radius r and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector along the axis. The angle of the cone relative to the positive axis is θ.

Form an infinite surface from line definition l. Initially the r-coordinate of the line definition is the x-coordinate of the part and the z-coordinate of the line definition is the y-coordinate of the part. The surface is the same curve in any $x-y$ plane along the part's z-axis. Coordinate Transformations describes data which can be used to move the surface anywhere in space.

Spin two-dimensional line definition, l, about an axis to form a line. $\left(p_{x}, p_{y}, p_{z}\right)$ is the center point on the axis and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector which orients the axis.

Spin two-dimensional line definition, l, about the X, Y, or Z axes, respectively.

Define a cylindrical surface with a point on the axis at (p_{x}, p_{y}, p_{z}), an orientation vector (v_{x}, v_{y}, v_{z}), and radius r.

Define an elliptical surface revolved about an
axis. $\left(p_{x}, p_{y}, p_{z}\right)$ is the center point, $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector which orients the ellipse. The radius in the plane normal to the axis of rotation is r_{1} and the intercept along the axis of rotation is at +/r_{2}.

GELN $a b c \quad n$ data

GELS $a b c$ data

GS n
GS1 n
GS2 n
GSM data n

GSN offset n

L3 l
$\mathbf{L 3 P} l v_{x} v_{y} v_{z}$

L3R $l r$
$\mathbf{L 3 S} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} l$

NCV data n

Define a general ellipsoid with the equation:

$$
(x / a)^{n}+(y / b)^{n}+(z / c)^{n}=1
$$

The ellipsoid can be positioned anywhere in space with data which is described in the section on Coordinate Transformations.

Define an ellipsoid with the equation:

$$
(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1
$$

The ellipsoid can be positioned anywhere in space with data which is described in the section on Coordinate Transformations.

Use general 3-D digitized surface number n.
Use lower side of general 3-D surface.
Use upper side of general 3-D surface.
Digitized surface n is moved by data which is described in Coordinate Transformations.

Use digitized surface n but offset the surface by offset in the normal direction.

The surface is actually just three-dimensional line definition l.

Three-dimensional line definition l is projected along $\left(v_{x}, v_{y}, v_{z}\right)$ to form a surface.

The surface is a circular tube of radius r about three-dimensional line definition l.

Spin three-dimensional line definition l about the axis defined by point $\left(p_{x}, p_{y}, p_{z}\right)$ and orientation vector $\left(v_{x}, v_{y}, v_{z}\right)$.

NURB curve defined by entity number n in the NURB geometry database is used. This curve is moved by data which is described in Coordinate Transformations.

NURB surface defined by entity number n in the NURB geometry database is used. This surface
is moved by data which is described in Coordinate Transformations.

NSFN data n

PL3 f1 p1x p1y p1z
f2p2x p2y p2z
f3 p3x p3y p3z offset

PLAN $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z}$

POLY $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z}$
$n a_{0} a_{1} \ldots a_{n}$
$\mathbf{P R} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r_{1} t_{1} r_{2} t_{2} r_{3} t_{3}$
$\mathbf{S P} p_{x} p_{y} p_{z} r$
$\mathbf{T 1} l_{1} l_{2} l_{3} l_{4} l_{5}$

T2 n opt

NURB surface defined by entity name n in the SC03 geometry database is used. This surface is moved by data which is described in Coordinate Transformations.

Plane Defined by three points. f1, f 2 and f 3 specify the coordinate system which is RT for rectangular, CY for cylindrical, or SP for spherical. P1, P2, and P3 must be three noncollinear points in the plane. f 2 and f 3 can also be V to indicate that the input points are vectors relative to P 1 . The surface definition is offset from the three points by the distance offset.

Define a plane. $\left(p_{x}, p_{y}, p_{z}\right)$ is any point on the plane and $\left(v_{x}, v_{y}, v_{z}\right)$ is a normal vector.

Define a surface as a planar polynomial which is then spun about an axis. $\left(p_{x} p_{y}, p_{z}\right)$ is a point on the axis of rotation and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector which orients the axis of rotation. The polynomial is of degree n with coefficients a_{0}, $a_{1}, \ldots a_{n}$.

Parabolic surface of revolution. $\left(p_{x}, p_{y}, p_{z}\right)$ is a point on the axis of revolution and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector orienting the axis of revolution. $\left(r_{1}, t_{1}\right)$, $\left(r_{2}, t_{2}\right)$ and $\left(r_{3}, t_{3}\right)$ are radial and axial positions of three points which are fit with a parabola.

Define a sphere with center $\left(p_{x}, p_{y}, p_{z}\right)$ and radius r.

This is a special purpose surface. $l_{1}, l_{2}, l_{3}, l_{4}$ and l_{5} refer to two-dimensional line definitions. The surface is axisymmetric about the Z-axis and performs Z-projections only. The equation for the surface is as follows:

$$
z=l_{3}(r)+\left(l_{2}(r)-l_{1}(r)\right) *\left(1+l_{4}(q) * l_{5}(r)\right)+l_{1}(r)
$$

Project along an axis onto digitized surface definition n. Values for opt are as follows:
$=$ MINX: project along the X-axis to the minimum X-intercept.
$=$ MAXX: project along the X-axis to the maximum X - intercept.
$=$ MINY: project along the Y-axis to the minimum Y-intercept.
$\mathbf{T S} p_{x} p_{y} p_{z} q_{x} q_{y} q_{z} r_{1} t_{1} r_{2}$
$\mathbf{T S 2 P} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r_{1} z_{1} r_{2} z_{2} r_{3}$
$=$ MAXY: project along the Y-axis to the maximum Y - intercept.
$=$ MINZ: project along the Z-axis to the minimum Z - intercept. $=$ MAXZ: project along the Z-axis to the maximum Z - intercept.

Define a torus. $\left(p_{x} p_{y}, p_{z}\right)$ is a point on the primary axis of rotation and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector which orients this axis. r_{1} is the radius to the secondary axis, t_{1} is an axial offset relative to ($p_{x} p_{y}, p_{z}$) and r_{2} is the radius from the secondary axis to the torus surface.

Define a torus with two points on the surface. $\left(p_{x} p_{y}, p_{z}\right)$ is a point on the primary axis of rotation and $\left(v_{x}, v_{y}, v_{z}\right)$ is a vector which orients this axis. r_{3} is the radius of the surface from the secondary axis. If $r_{3}>0$ then the secondary axis lies to the left as one moves from $\left(r_{1}, z_{1}\right)$ to $\left(r_{2}, z_{2}\right)$. Otherwise, the axis is to the right.

17. Volume Definitions

This section documents the available solid geometric objects. Solid objects are used by the "VD" command in the control section. The following types are available.
$\mathbf{C R} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} l$
$\mathbf{C Y F} p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r t_{\text {min }} t_{\text {max }}$

CYLI $p_{x} p_{y} p_{z} v_{x} v_{y} v_{z} r$

DS n

RECT $n x_{\text {min }} x_{\text {max }} y_{\text {min }} y_{\text {max }} z_{\text {min }} z_{\text {max }}$

SD $n t$

SPHE $p_{x} p_{y} p_{z} r$

TRIA $n x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} z_{\text {min }} z_{\text {max }}$

Form a solid by spinning two-dimensional line definition l about the axis defined by point ($p_{x} p_{y}, p_{z}$) and orientation vector $\left(v_{x}, v_{y}, v_{z}\right)$.

Define a cylinder of radius r and axis defined by point $\left(p_{x}, p_{y}, p_{z}\right)$ and orientation vector $\left(v_{x}, v_{y}, v_{z}\right)$. The cylinder extends along the axis from $t_{\text {min }}$ to $t_{\text {max }}$.

Define a cylinder of radius r and axis defined by point $\left(p_{x}, p_{y}, p_{z}\right)$ and orientation vector $\left(v_{x}, v_{y}, v_{z}\right)$. The cylinder has infinite length.

Digitized surface n is a closed surface which defines a volume.

Define a rectangular solid with $x_{\min } \leq x \leq x_{\text {max }}$, $y_{\min } \leq y \leq y_{\max }$ and $z_{\min } \leq z \leq z_{\max }$. This can be positioned anywhere in space using global coordinate transformation number n.

The surface is defined by surface definition n and thickness t.

Define a sphere of radius r and centered at ($p_{x} p_{y} p_{z}$).

The solid is a triangular section in the $X-Y$ plane which runs from $z_{\min }$ to $z_{\text {max }}$ in the Z-direction. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are the three corner points. This can be moved anywhere in space using global coordinate transformation n.

18. Coordinate Transformations

Option 1:

For Option 1, three nodal points must be input. Figure 18-1 shows the orientation of the local coordinate system defined by the three points.
f_{1}
$p_{1 x} p_{1 y} p_{1 z}$
f_{2}
$p_{2 x} p_{2 y} p_{2 z}$
f_{3}
$p_{3 x} p_{3 y} p_{3 z}$

Flag describing coordinate type for point 1 $=" R T$ ": rectangular coordinates
$=" C Y$ ": cylindrical coordinates (R, θ, Z).
$=" S P$ ": spherical coordinates (R, θ, ψ)
Coordinates for point 1.
Flag describing coordinate type for point 2.
$=" R T$ ": rectangular coordinates
$=" C Y$ ": cylindrical coordinates (R, θ, Z).
$=" S P ":$ spherical coordinates (R, θ, ψ) $=" V$ ": point 2 is offset from point 1 by the vector.

Coordinates or vector for point 2
Flag describing coordinate type for point 3.
$=" R T$ ": rectangular coordinates $=" C Y$ ": cylindrical coordinates (R, θ, Z).
$=" S P ":$ spherical coordinates (R, θ, ψ) $=" V "$: point 3 is offset from point 1 by the vector.

Coordinates or vector for point 3 .

Global axes

Figure 18-1. Coordinate Transformations.

Option 2:

Option 2 allows the following commands in any order.

CSCA s
D1
D2
L

Scale coordinates by s.
Save the current offset position and perform rotations relative to this point.
Restore the offset position.
Copy the previous transformation and begin defining the next system.
MATRIX $a_{11} a_{21} a_{31} a_{12} a_{22} a_{23} a_{31} a_{32} a_{33}$
Set the transformation to the input $3 \ll 3$ matrix.
MX Δx
MY Δy
MZ Δz
REPE n
RX θ
RY θ
RZ θ
RXY
RYZ
RZX
SAVE n

SCALE s
$\mathbf{V} \Delta x \Delta y \Delta z$
XSCA s
YSCA s
ZSCA s
;

Move Δx in the x-direction.
Move Δy in the y-direction.
Move Δz in the z-direction.
Repeat the current transformation n times.
Rotate θ degrees about the X-axis.
Rotate θ degrees about the Y-axis.
Rotate θ degrees about the Z-axis.
Reflect about the $X Y$ plane.
Reflect about the $Y Z$ plane.
Reflect about the $Z X$ plane.
The sequence of coordinate transformations is generated starting from coordinate system n when using the "REPE" command.
Scale coordinates by s.
Move $\Delta x, \Delta y$, and Δz.
Scale X-coordinates.
Scale Y-coordinates.
Scale Z-coordinates.
Terminate Option 2.

19. LS-DYNA2D Commands and Materials

Analysis options are code dependent. They can be set either in the control section of the LS-INGRID input file or in the graphics phase. These commands become active when LS-DYNA2D output is selected with the DN2D command (see Control Commands).

BRODE
 Define Brode function parameters.

Options:

YLD	yld	Yield (Ktons)
HEIGHT	h	Height of burst
XBO	x	Coordinates of Brode origin (space, time) in LS-INGRID units.
YBO	y	z
ZBO	z	Conversion factor $-\mathrm{ft}$. to DYNA length units (default = meters). Conversion factor - ms to DYNA time units (default - seconds). CL
CT	$c l$	$c t$
CP	$c p$	Cenversion factor - psi to DYNA pressure units Terminate Brode function input.
;		

Note: If "RANG" "COEF", and "GFUN" are specified, a "modified" Brode function will be used in DYNA; otherwise, straight Brode is used.

RANG	$r_{1} \ldots r_{5}$	Range values for Brode function.
COEF	$c_{1} \ldots c_{8}$	Coefficient values for Brode function.
GFUN	$g_{1} \ldots g_{7}$	GFUNC values for Brode Function.

The Brode function is applied to pressure surfaces with load curve number -1 .
DBQT $i \quad$ Change default bulk viscosity type from 1 to i :
$=1$: standard LS-DYNA2D
=2: Richards-Wilkins
DHGQ Q_{h}
Change default hourglass viscosity from . 10 to Q_{h}.

DHQT i

Change default hourglass viscosity type from 1 to i :

		```=1: standard LS-DYNA2D =2: rotational =3: Flanagan-Belytschko viscous form. =4: Hancock```
DQL $Q_{l}$		Change default linear bulk viscosity from .06 to $Q_{l}$.
DQQ $Q_{q}$		Change default quadratic bulk viscosity from 1.5 to $Q_{q}$.
GEOM		```Select geometry type. =AXIS: axisymmetric (default) =PLAN: plane strain```
GRAV	$g_{x} g_{y} g_{z}$	Gravity acceleration vector.
ITSS	$t_{o}$	Initial time step size. This is optional input for LS-DYNA3D. If $t_{o}$ is zero, LS-DYNA3D picks the initial time step size.
PLTI	$\mathrm{D} t$	Node and element data dump interval for TAURUS post-processing.
PRTI	$\mathrm{D} t$	Node and element data dump interval for high speed printer.
RDMT $m$		Delete material $m$. This applies to the restart number selected by the RNUM command.
RDSI $s$		Delete sliding interface $s$. This applies to the restart number selected by the RNUM command.
REST name		Set the family name for restart input file generation to name.
REZO $t_{1} t_{2}$ D $t$ Periodic rezones begin at time $t_{1}$ and end at time $t_{2}$. Rezones are performed after every time interval of $\mathrm{D} t$.		
RHVC $h$		The default hourglass viscosity for restart is set to $h$. This applies to the restart number selected by the RNUM command.
RLBV $l$		The default linear bulk viscosity for restart is set to $l$. This applies to the restart number selected by the RNUM command.
RNUM $n$		Restart commands apply to restart number $n$.
RPLT $t$		The plot interval for restart is set to $t$. This applies to the restart number selected by the RNUM command.



### 19.1 LS-DYNA2D MATERIAL INPUT

LS-DYNA2D material input is possible after the DN2D command is input (see Control Commands). The form of this input is: MAT $n$ TYPE $m$ \{options specific to material type $m$ \} \{general material options\} ENDMAT. $n$ is a material name which is assigned an input number. Therefore, the materials should be defined in order before any additional use of materials is made.

### 19.2 General Material Options

$\mathrm{BQL} Q_{l}$
$\mathrm{BQQ} Q_{q}$
BQT $i$

EOS eost

HEAD
HGQ $Q_{h}$

HGQT

IMGL
MAT $m$

RO $m$
TYPE $n$

Change linear bulk viscosity for 06 to $Q_{l}$.
Change quadratic bulk viscosity from 1.5 to $Q_{q}$.
Change bulk viscosity type from 1 to $i$ :
=1: standard LS-DYNA2D
=2: Richards-Wilkins
Begin defining equation-of-state type eost for the current material definition. Each equation-of-state is terminated by the ENDEOS command.

Replace default heading (typed on the next line).
Change value of hourglass viscosity from .10 to $Q_{h}$.

Change value of hourglass viscosity type from 1 to $i$ :
$=1$ : standard LS-DYNA2D
=2: rotational
=3: Flanagan-Belytschko viscous form
=4: Hancock
Initialize material for gravity loads.
Begin material definition $m$. Each material definition is terminated by the ENDMAT command.

Density (required - no default).
The current material is of type $n$.

## Material Type 1 (Elastic)

Default heading: Material Type \#1 (Elastic)

Input any two of the following.

BULK $K$	Bulk modulus
E $E$	Young's modulus
G $G$	Shear modulus
PR $v$	Poisson's ratio

Material Type 2 (Orthotropic Elastic)

EA $E_{a}$
See constitutive matrix below
EB $E_{b}$
$\mathrm{EC} E_{c}$
PRBA $v_{b a}$
PRCA $v_{\chi a}$
PRCB $v_{c b}$
GAB $G_{a b}$
AOPT aopt
Material axes option (Figure 19-1).
$=0.0$ : locally orthotropic with materials axes by $j$ value specified on each element card and element nodes $n_{1}$ and $n_{2}$. (see Figure 19-1).
=1.0: locally orthotropic with materials axes by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by $\mathrm{j}_{\mathrm{G}}$.

## $\mathbf{R P} r_{p}$

$\mathbf{Z P} z_{p}$
PSIG $\mathrm{j}_{\mathrm{G}}$
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.

The material law that relates stresses to strains is defined as:

$$
\underset{\sim}{\mathrm{C}}={\underset{\sim}{T}}^{\mathrm{T}} \underset{\sim}{\mathrm{C}} \underset{\sim}{\mathrm{C}} \mathrm{~T},
$$

Where $\mathrm{lo}(\mathrm{T}, \underset{\sim}{\sim})$ is a transformation matrix and $\backslash \mathrm{o}\left(\mathrm{C}, \sim_{\sim}\right) \mathrm{L}$ is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, $a, b$, and $c$. The inverse of $\left.10(\mathrm{C},)_{\sim}\right) \mathrm{L}$ is defined as

$$
\underset{\sim}{\mathrm{L}}=\left[\begin{array}{cccccc}
\frac{1}{\mathrm{E}_{\mathrm{a}}} & -\frac{\mathrm{V}_{\mathrm{ba}}}{\mathrm{E}_{\mathrm{b}}} & -\frac{\mathrm{v}_{\mathrm{ca}}}{\mathrm{E}_{\mathrm{c}}} & 0 & 0 & 0 \\
-\frac{\mathrm{V}_{\mathrm{ab}}}{\mathrm{E}_{\mathrm{a}}} & \frac{1}{\mathrm{E}_{\mathrm{b}}} & -\frac{\mathrm{v}_{\mathrm{cb}}}{\mathrm{E}_{\mathrm{c}}} & 0 & 0 & 0 \\
-\frac{\mathrm{v}_{\mathrm{ac}}}{\mathrm{E}_{\mathrm{a}}} & -\frac{\mathrm{V}_{\mathrm{bc}}}{\mathrm{E}_{\mathrm{b}}} & \frac{1}{\mathrm{E}_{\mathrm{c}}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\mathrm{G}_{\mathrm{ab}}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\mathrm{G}_{\mathrm{bc}}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\mathrm{G}_{\mathrm{ca}}}
\end{array}\right]
$$

Note that $\frac{v_{a b}}{E_{a}}=\frac{v_{b a}}{E_{b}}, \frac{v_{c a}}{E_{c}}=\frac{v_{a c}}{E_{a}}, \frac{v_{c b}}{E_{c}}=\frac{v_{b c}}{E_{b}}$.


AOPT=0.0 default
(c)


AOPT=2.0 define $\mathbf{a}$ and $\mathbf{d}$


$$
\mathrm{AOPT}=3.0
$$

Figure 19-1. Options for determining principal materials axes: (a) AOPT $=0.0$, (b) AOPT $=1.0$, and (c) $\mathrm{AOPT}=2.0$.

## Material Type 3 (Kinematic/Isotropic Elastic/Plastic)

Default heading: Material Type \#3 (Elastic-Plastic)

Input any two of the following:

BULK $K$	Bulk modulus
E $E$	Young's modulus
G $G$	Shear modulus
$\mathbf{P R} v$	Poisson's ratio

Additional Options:

## SIGY $\sigma_{y}$

ETAN $E_{t}$
BETA $\beta^{\prime}$

## Yield stress

Hardening modulus
Hardening parameter, $0 \leq \beta^{\prime} \leq 1$

Isotropic, kinematic, or a combination of isotropic and kinematic hardening may be specified by varying $\beta^{\prime}$ between 0 and 1 . For $\beta^{\prime}$ equal to 0 and 1 , respectively kinematic and isotropic hardening are obtained as shown in Figure 19-2. Effective stress is defined in terms of the deviatoric stress tensor, $\mathrm{s}_{\mathrm{ij}}$ as:

$$
\bar{\sigma}=\left(\frac{3}{2} S_{j} S_{j}\right)^{1 / 2}
$$

where,

$$
\mathrm{S}_{\mathrm{ij}}=\sigma_{\mathrm{ij}}-\frac{1}{3} \sigma_{\mathrm{kk}} \delta_{\mathrm{ij}}
$$

and effective plastic strain by:

$$
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}} \mathrm{~d} \bar{\varepsilon} \mathrm{p}
$$

where $t$ denotes time and

$$
\mathrm{d} \bar{\varepsilon}^{\mathrm{p}}=\left(\frac{2}{3} \mathrm{~d} \varepsilon_{\mathrm{ij}}^{\mathrm{p}} \mathrm{~d} \varepsilon_{\mathrm{ij}}^{\mathrm{p}}\right)^{1 / 2}
$$



Figure 19-2. Elastic-plastic behavior with isotropic and kinematic hardening where $l_{0}$ and $l$ are undeformed and deformed length of uniaxial tension specimen.

## Material Type 4 (Thermo-Elastic-Plastic)

Default heading: Material Type 4 (Thermo-Elastic-Plastic)

NPTS $n$
TEMP $T_{1} T_{2} \ldots T_{n}$
$\mathbf{E} E_{1} E_{2} \ldots E_{n}$
PR $v_{1} v_{2} \ldots v_{n}$
ALPHA $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$
SIGY $\sigma_{y 1} \sigma_{y 2} \ldots \sigma_{y n}$
ETAN $E_{t 1} E_{t 2} \ldots E_{t n}$

Number of temperature values for which material constants are defined.
Temperatures
Young's moduli
Poisson's ratios
Coefficients of thermal expansion.
Yield stresses
Tangent moduli

## Material Type 5 (Soil and Crushable Foam)

Default heading: Material Type 5 (Soil and Crushable Foam)

Input any two of the following:
BULK $K$
E $E$
G $G$
PR $V$

Additional Options:

AO $a_{0}$
A1 $a_{1}$
A2 $a_{2}$
PC $P_{c}$
NPTS $n$
$\operatorname{VS} \varepsilon_{v 1} \varepsilon_{v 2} \ldots \varepsilon_{v n}$
$\mathbf{P} p_{1} p_{2} \ldots p_{n}$

Yield function constant.
Yield function constant.
Yield function constant.
Pressure cutoff for tensile fracture.
Number of points in volumetric strain versus pressure curve ( $n £ 10$ ).
Volumetric strain values.
Pressures corresponding to volumetric strain values.

The deviatoric yield function, $\phi$, is described in terms of the second invariant $J_{2}$.

$$
\mathrm{J}_{2}=\frac{1}{2} \mathrm{~s}_{\mathrm{ij}} \mathrm{~s}_{\mathrm{ij}}
$$

Pressure, $p$, and constants $a_{0}, a_{1}$, and $a_{2}$ as:

$$
\phi=J_{2}-\left[a_{0}+a_{1} p+a_{2} p^{2}\right]
$$

On the yield surface, $J_{2}=1 / 3\left(\sigma_{\mathrm{y}}\right)^{1 / 2}$, where $\sigma_{\mathrm{y}}$ is the yield stress, i.e.,

$$
\left.\sigma_{y}=\mid 3 l a_{0}+a_{1} p+a_{2} p^{2}\right]^{1 / 2}
$$

For elastic-perfectly plastic behavior $a_{1}=a_{2}=0$, and $\left(3 a_{0}\right)^{1 / 2}$ defines the yield strength. The volumetric strain is given by the natural logarithm of the relative volume $V$. If the pressure drops below the cutoff value, PC , then it is reset to that value.


Figure 19-3. Volumetric strain versus pressure curve for soil and crushable foam model.

## Material Type 6 (Viscoelastic)

G $G_{0}$	Short term shear modulus.
GI $G^{\prime}$	Long term shear modulus.
K $K$	Bulk modulus.
BETA $\beta$	Decay constant.

The shear relaxation behavior is described by:

$$
\mathrm{G}(\mathrm{t})=\mathrm{G}+\left(\mathrm{G}_{0}-\mathrm{G}\right) \mathrm{e}^{-\beta \mathrm{t}}
$$

A Jaumann rate formulation is used:

$$
\stackrel{\nabla}{\sigma_{\mathrm{ij}}^{\prime}}=2 \int_{0}^{\mathrm{t}} \mathrm{G}(\mathrm{t}-\tau) \mathrm{D}_{\mathrm{ij}}^{\prime}(\tau) \mathrm{dt}
$$

where the prime denotes the deviatoric part of the stress rate, $\stackrel{\nabla}{\sigma}_{i j}$, and the strain rate $D_{I J}$.

## Material Type 7 (Blatz-Ko Rubber)

Default heading: Material Type \#7 (Rubber)

G m
Shear modulus

The second Piola-Kirchhoff stress is computed as

$$
S_{i j}=\mu\left(\frac{1}{V} C_{i j}-V^{-1 / 1-2 v} \delta_{i j}\right)
$$

where $V$ is the relative volume, $C_{i j}$ is the right Cauchy-Green strain tensor, and $v$ is the Poisson's ratio which is set to .463 internally. This stress measure is transformed to the Cauchy stress, $\sigma_{i j}$, according to the relationship

$$
\sigma_{\mathrm{ij}}=\mathrm{V}^{-1} \mathrm{~F}_{\mathrm{ik}} \mathrm{~F}_{\mathrm{jl}} \mathrm{~S}_{\mathrm{lk}}
$$

where $F_{i j}$ is the deformation gradient tensor.

Default heading: Material Type \#8 (High Explosive Burn)
D $D$
Detonation velocity.
PCJ $P_{C J}$
Chapman-Jouget pressure.

This material model requires an equation-of-state.

## Material Type 9 (Null Material)

Default heading: Material Type \#9 (Null Material)

PC pc	Pressure cutoff.
MU $\mu$	Viscosity.

The null material must be used with an equation-of-state. Pressure cutoff is negative in tension. A viscous stress of the form

$$
\sigma_{i j}=\mu \varepsilon_{i j}
$$

is computed for nonzero $\mu$ where $\varepsilon_{\mathrm{ij}}^{Y}$ is the deviatoric strain rate.

## Material Type 10 (Isotropic-Elastic-Plastic-Hydrodynamic)

Default heading: Material Type \#10 (Isotropic-Elastic-Plastic-Hydrodynamic)

G $G$	Shear modulus
SIGY $\sigma_{y}$	Yield strength
EH $E_{h}$	Plastic hardening modulus
PC $p_{c}$ or $-\mathrm{s}_{f}$	Pressure cutoff
	$=0:$ cutoff of - $^{\prime}$ is assumed
A1 $a_{1}$	Yield function constant
A2 $a_{2}$	Yield function constant
NPTS $n$	Number of points in yield stress-effective plastic
	strain curve or yield stress-pressure curve.
ES $\sigma_{y 1} \sigma_{y 2} \ldots \sigma_{y n}$	Yield stress
EPS $\varepsilon_{p 1} \varepsilon_{p 2} \ldots \varepsilon_{p n}$	Effective plastic strain
P $p_{1} p_{2} \ldots p_{n}$	Pressure
FS $s$	Failure strain

If the yield stress-plastic strain curve is not defined and if $a_{1}=a_{2}=0$, the bilinear stress-strain curve shown in Figure 19-2 is obtained with $b=1$. The yield strength is calculated as

$$
\sigma_{\mathrm{y}}=\sigma_{0}+\mathrm{E}_{\mathrm{h}} \bar{\varepsilon}^{\mathrm{p}}
$$

The quantity $\mathrm{E}_{\mathrm{h}}$ is the plastic hardening modulus defined in terms of Young's modulus, E , and the tangent modulus, $\mathrm{E}_{\mathrm{t}}$, as follows

$$
E_{h}=\frac{E_{t} E}{E-E_{t}}
$$

If Cards 5-8 are used, a curve like that shown in Figure 3.4 may be defined. Effective stress is defined in terms of the deviatoric stress tensor, $\mathrm{s}_{\mathrm{ij}}$, as:

$$
\begin{equation*}
\bar{\sigma}=\left(\frac{3}{2} s_{i j} s_{\mathrm{ij}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

and effective plastic strain by:

$$
\begin{equation*}
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}}\left(\frac{2}{3} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}} D_{\mathrm{ij}}^{\mathrm{p}}\right)^{1 / 2} \mathrm{dt} \tag{2}
\end{equation*}
$$

where $t$ denotes time and $D_{i j}^{p}$ is the plastic component of the rate of deformation tensor. In this case the plastic hardening modulus on Card 3 is ignored and the yield stress is given as

$$
\sigma_{y}=\mathrm{f}\left(\bar{\varepsilon}^{\mathrm{p}^{\prime}}\right.
$$

where the value for $f\left(\bar{\varepsilon}^{p}\right.$, is found by interpolation from the data curve.


Figure 19-4. Effective stress versus effective plastic strain curve.

## Material Type 11 (Temperature Dependent Elastic-Plastic Hydrodynamic)

Default heading: Material Type \#11 (Temperature Dependent Elastic-Plastic Hydrodynamic)

G $G_{0}$	Shear modulus.
SIGO $\sigma_{o}$	See equations below.
BETA $\beta$	
N $n$	
GAMA $g_{i}$	
SIGM $\sigma_{m}$	
B $b$	
BP $b^{\prime}$	
H $h$	
F $f$	
A $A$	
TO $T_{m o}$	
GAMO $\gamma_{0}$	
SA $a$	

PC pmin or $-\mathrm{s}_{f}$
ECO $E C_{0} \quad$ Cold compression energy coefficients (optional)
EC1 $E C_{1}$
EC2 $E C_{2}$
EC3 $E C_{3}$
EC4 $E C_{4}$
EC5 $E C_{5}$
EC6 $E C_{6}$
EC7 $E C_{7}$
EC8 $E C_{8}$
EC9 $E C 9$

If cold compression energy coefficients are not input, then LS-DYNA2D will calculate them based on the equation-of-state.

SPALL type
Spall type
$=0$ : default set to " 2.0 "
$=1: p 3 p_{\text {min }}$
$=2$ : if $\sigma_{\max } \geq \sigma_{f}$ element spalls and tension
$p<0$, is never allowed; $\sigma_{\max }=$ maximum
principal stress.
$=3$ : if $p<p_{\text {min }}$ element spalls and tension
$p<0$, is never allowed.
$=4$ : failure strain
Users who have an interest in this mode are encouraged to study the paper by Steinberg and Guinan [9] which provides the theoretical basis. Another useful reference is the KOVEC user's manual [10].

In terms of the foregoing input parameters, we define the shear modulus, G, before the material melts as:

$$
G=G_{0}\left[1+b p V^{1 / 3}-h\left(\frac{E_{i}-E_{C}}{3 R^{\prime}}-300\right)\right] e^{-f E_{i} / E_{m}-E_{i}}
$$

where $p$ is the pressure, $V$ is the relative volume, $E_{C}$ is the cold compression energy:

$$
\begin{gathered}
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}}\left(\frac{2}{3} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}}\right)^{1 / 2} \mathrm{dt} \\
x=1-V
\end{gathered}
$$

and $E_{m}$ is the melting energy:

$$
\mathrm{E}_{\mathrm{m}}(\mathrm{x})=\mathrm{E}_{\mathrm{c}}(\mathrm{x})+3 \mathrm{R}^{\prime} \mathrm{T}_{\mathrm{m}}(\mathrm{x})
$$

which is in terms of the melting temperature $T_{m}(x)$ :

$$
\mathrm{T}_{\mathrm{m}}(\mathrm{x})=\frac{\mathrm{T}_{\mathrm{mo}} \exp (2 \mathrm{ax})}{\mathrm{V}^{2\left(\gamma_{0}-\mathrm{a}-\frac{1}{3}\right)}}
$$

and the melting temperature at $r=r_{0}, T_{m o}$.
In the above equation, $R^{\prime}$ is defined by

$$
\mathrm{R}^{\prime}=\frac{\mathrm{Rp}}{\mathrm{~A}}
$$

where $R$ is the gas constant and $A$ is the atomic weight. If $R^{\prime}$ is not defined, LS-DYNA2D computes it with $R$ in the cm -gram-microsecond system of units.

The yield strength $\sigma_{y}$ is given by:

$$
\sigma_{y}=\sigma_{0}^{\prime}\left[1+b^{\prime} p V^{1 / 3}-h\left(\frac{E_{i}-E_{c}}{3 R^{\prime}}-300\right)\right] e^{-f E_{i} / E_{m}-E_{i}}
$$

if $E_{m}$ exceeds $E_{i}$. Here, $\sigma_{0}$ ' is given by:

$$
\sigma_{\mathrm{y}}=\sigma_{0}^{\prime} \mid 1+\beta\left(\gamma_{\mathrm{i}}+\varepsilon^{-p^{-n}},\right.
$$

where $\varepsilon_{i}$ is the initial plastic strain. Whenever $\sigma_{0}{ }^{\prime}$ exceeds $\sigma_{m}, \sigma_{0}{ }^{\prime}$ is set equal to $\sigma_{m}$. After the material melts, $\sigma_{y}$ and $G$ are set to zero.

If the coefficients ECO,...EC9 are not defined above, LS-DYNA2D will fit the cold compression energy to the ten term polynomial expansion:

$$
\mathrm{E}_{\mathrm{C}}=\sum_{\mathrm{i}=0}^{9} \mathrm{EC}_{\mathrm{i}} \eta^{\mathrm{i}}
$$

where $E C_{i}$ is the $i$ th coefficient and $\eta=\rho / \rho_{0^{-}}$. The least square method is used to perform the fit.

## Material Type 12 (Johnson/Cook Plasticity Model)

G $G$
A $A$
B $B$
N $n$
R $r$

Shear modulus.
See equation (1).
See equation (1).
See equation (1).
See equation (1).

M $m$
$\mathbf{T M} T_{m e l t}$
TO To
EPSO Eo
HCP $c$
PC $p c$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
D4 $d_{4}$
D5 $d_{5}$
IT $i$

See equation (1).
Melt temperature
Room temperature.
Effective plastic strain rate.
Specific heat.
Pressure cutoff (pc < 0.0).
See equation (2).
Iteration options:
$=0$ : no iterations.
=1: LS-DYNA2D iterates to determine a more accurate point on the stress-strain curve.

The Johnson/Cook model is described in reference [11]. This includes strain rate hardening, thermal softening, and a complex damage model. The equations describing the flow stress versus effective plastic strain and failure strain are as follows:

$$
\sigma_{y}=\left(A+B \bar{\varepsilon}^{p^{n}}\right)\left(1+C \ln \varepsilon^{\prime}\right)^{\prime}\left(1-T * m^{\prime}\right)
$$

where $A, B, C, n$, and $m$ are input constants,

$$
\begin{aligned}
& \bar{\varepsilon}^{\mathrm{p}} \text { effective plastic strain } \\
& \dot{\varepsilon} \hat{\varepsilon}^{*}=\frac{\frac{\dot{c}^{\prime} \mathrm{p}}{\dot{\varepsilon}_{0}}}{\dot{\varepsilon}_{0}} \text { effective plastic strain rate for } \dot{\varepsilon}_{0}=1 \mathrm{~s}^{-1} \\
& T^{*}=T_{r} / T_{m}=\text { homologous temperature }
\end{aligned}
$$

Constants for a variety of materials are also provided in [11].
Due to the nonlinearity in the dependence of flow stress on plastic strain, an accurate value of the flow stress requires iteration for the increment in plastic strain. However, by using a Taylor series expansion with linearization about the current time, we can solve for $\sigma_{y}$ with sufficient accuracy to avoid iteration.

The strain at fracture is given by

$$
\left.\varepsilon^{f}=\left[D_{1}+D_{2} \exp D_{3} \sigma^{*^{-}} \mid 1+D_{4} \ln \varepsilon^{*}\right] \mid 1+D_{5} T^{*}\right]
$$

where $\sigma^{*}$ is the ratio of pressure divided by effective stress:

$$
\sigma^{*}=\frac{\mathrm{p}}{\sigma_{\mathrm{eff}}}
$$

Fracture occurs when the damage parameter

$$
\mathrm{D}=\sum \frac{\Delta \bar{\varepsilon}^{\mathrm{p}}}{\varepsilon^{\mathrm{f}}}
$$

reaches the value of 1 .

## Material Type 13 (Power Law Plasticity)

Input any two of the following:

BULK $K$	Bulk modulus.
E $E$	Young's modulus.
G $G$	Shear modulus.
PR $v$	Poisson's ratio.

Additional Options:

$\mathbf{K} k$	See equation below.
$\mathbf{M} m$	See equation below.

Elastoplastic behavior with isotropic hardening is provided by this model. The yield stress, $\sigma_{y}$, is a function of plastic strain and obeys the equation:

$$
\sigma_{\mathrm{y}}=\mathrm{k}\left(\varepsilon_{\mathrm{e}}+\bar{\varepsilon}^{\mathrm{p}^{\prime n}},\right.
$$

$\varepsilon_{\mathrm{e}}$ is the elastic strain to yield and where $\bar{\varepsilon}^{\mathrm{p}}$ is the effective plastic strain. ${ }^{* * * \text { missing }}$ ***

$$
. * * * \operatorname{missing} * * *
$$

## Material Type 16 (Pseudo Tensor Geological Model)

Default heading: Material Type \#16 (Pseudo Tensor Geological Model)

G $G$
Shear modulus (constant Shear modulus model).

PR $v$	Poisson's ratio (constant Poisson's ratio model).
SIGF sigf	Tensile cutoff. (Maximum principal stress for   failure.)
A0 $a_{0}$	Cohesion.
A1 $a_{1}$	Yield function constant.
A2 $a_{2}$	Yield function constant.
A0F $a_{0 f}$	Cohesion for failed material.
A1F $a_{1 f}$	Pressure hardening coefficient for failed
B1 $b_{1}$	material.
PER $p$	Damage scaling factor.
ER $E_{r}$	Percent reinforcement.
PR $v_{r}$	Elastic modulus for reinforcement.
SIGY $\sigma_{y}$	Poisson's ratio for reinforcement.
ETAN $E_{t}$	Initial yield strength.
LCP $l c_{1}$	Tangent modulus.
LCR $l c_{2}$	Load curve giving rate sensitivity for principal
NPTS $n$	material.
ESS $\sigma_{1} \sigma_{2} \ldots \sigma_{n}$	Load curve giving rate sensitivity for
EPS $\varepsilon_{p 1} \varepsilon_{p 2} \ldots \varepsilon_{p 3}$	reinforcement.
P $p_{2} \ldots p_{n}$	Number of points in yield stress-effective plastic
strain curve or yield stress-pressure curve;	
(n£16).	

See the LS-DYNA2D manual for a description of this model.

## Material Type 25 (Inviscid Two Invariant Geologic Cap Model)

G $G$	Sh
K $K$	Bul
ALPHA $\alpha$	$\alpha$.
BETA $\beta$	$\beta$.
GAMMA $\gamma$	$\gamma$.
THETA $\theta$	$\theta$.

R $R$
$R$.
D $D$
X0 $X_{0}$
D.
CC $C$

T T
NPLOT nplot

LTYPE ltype
Variable ltype.
=1: soil/concrete (cap contracts)
=2: rock (cap doesn't contract)


Figure 19-5. The yield surface of the two-invariant cap model in pressure/ $\mathrm{J}_{2}$-deviator space. $\mathrm{f}_{1}=0$, $f_{2}=0$, and $f_{3}=0$, denote the failure envelope, the hardening cap surface, and the tension cut-off surface, respectively.

The shaded area in Figure 19-5 is the "compressive corner regions".

$$
\begin{array}{ll}
\mathrm{f}_{1}(\underset{\sim}{\sigma}):=\| \underset{\sim}{s} \mid-\mathrm{F}_{\mathrm{e}}\left(\mathrm{~J}_{1},\right. & \text { for }-\mathrm{T} \leq \mathrm{J}_{1}<\kappa \\
\mathrm{f}_{2}(\underset{\sim}{\sigma}, \kappa):=\|\underset{\sim}{S}\|-\mathrm{F}_{\mathrm{C}} \mathrm{~J}_{1,} \kappa, & \text { for } \kappa \leq \mathrm{J}_{1}<\mathrm{X}(\kappa) \\
\mathrm{f}_{3}(\underset{\sim}{\sigma}):=-\mathrm{T}-\mathrm{J}_{1} & \text { for }-\mathrm{T} \leq \mathrm{J}_{1}<(\kappa),
\end{array}
$$


In addition, $\mathrm{T}>0$ is an material constant referred to as the tension cutoff. Note that the following standard conventions in soil mechanics, we have assumed compression and compaction positive. Functional forms for $\mathrm{Fe}_{\mathrm{e}}$ and $\mathrm{F}_{\mathrm{C}}$ used are:

$$
\begin{gathered}
\mathrm{F}_{\mathrm{e}}\left(\mathrm{~J}_{1}{ }^{\prime}:=\left[\alpha-\lambda \exp \left(-\beta \mathrm{J}_{1}{ }^{\prime}+\theta\right]_{1}\right.\right. \\
\mathrm{F}_{\mathrm{c}}\left(\mathrm{~J}_{1}, \kappa\right):=\sqrt{\mathrm{F}_{\mathrm{e}}^{2}(\kappa)-\frac{\left[J_{1}-\kappa\right]^{2}}{\mathrm{R}^{2}}}
\end{gathered}
$$

where $\mathrm{a}>0, \lambda>0, \beta>0, \theta>0$, and $\mathrm{R}>0$ are material parameters. In addition, $\mathrm{X}(\kappa)$ is a function of the hardening parameter $\kappa$ defined as

$$
\begin{aligned}
& X(\kappa):=\kappa+R F_{e}(\kappa) .
\end{aligned}
$$

otherwise

$$
\overline{\mathrm{h}}(\kappa):=\mathrm{W}\left\{1-\exp \left[-\mathrm{D}\left(\mathrm{X}(\kappa)-\mathrm{X}_{0}\right)\right]\right]
$$

## 20. LS-DYNA3D Commands and Materials

Analysis options are code dependent. They can be set either in the control section of the LS-INGRID input file or in the graphics phase. These commands become active when LS-DYNA3D output is selected with the DN3D command (see Control Commands).

## ARBITRARY

## BRODE

## Options:

Node and element numbering is arbitrary. (LS902 and later).

Define Brode function parameters.

Yield (Ktons)
Height of burst
Coordinates of Brode origin (space, time) in LS-INGRID units.

Conversion factor - ft. to DYNA length units (default = meters).
Conversion factor - ms to DYNA time units (default - seconds).
Conversion factor - psi to DYNA pressure units (default = Pascals).
Terminate Brode function input.

Note: If "RANG" "COEF", and "GFUN" are specified, a "modified" Brode function will be used in DYNA; otherwise, straight Brode is used.
RANG $r_{1} \ldots r_{5}$
COEF $c_{1} \ldots c_{8}$
GFUN $g_{1} \ldots g_{7}$

Range values for Brode function.
Coefficient values for Brode function.
GFUNC values for Brode Function.

The Brode function is applied to pressure surfaces with load curve number -1 .

BRUL $n$

Begin definition of user specified integration rule for beams number $n$.

## Options:

NPTS $n s_{1} t_{1} w_{1}<m_{1}>\ldots \quad$ Input $n$ integration points with the parametric

$$
s_{n} t_{n} w_{n}<m_{n}>
$$

BUPD opt

CUNI length time force

D2R $m_{1} m_{2}$

## D3HSP

## Options:

coordinate, $(s, t)$ and the weight, $w$. This terminates the rule.

Flag for updating coordinates of reference node for beam elements. Values of opt are "on" or "off". (LS-910 and later).

Unit conversion factors for coupling between LS-DYNA3D and CAL3D or MADYMO3D. (LS-910 and later).

Convert material $m_{1}$ from deformable to rigid. If $m_{2}$ is 0 , then this is an independent rigid body. Otherwise, $m_{2}$ is the master rigid body material. If a restart file definition has been initiated, then this command applies to the restart. Otherwise, it applies to the main DYNA3D input. (LS-920 and later.)

Additional output options for the D3HSP and message files.

DEBUG opt

ECHO opt

Option for producing debug output on calculation progress in the message file. Values for opt are either "on" or "off". (LS-910 and later).

Additional suppression options for printout. (LS-910 and later).
$=0$ : all data is printed.
$=1$ : nodal printing is suppressed.
$=2$ : element printing is suppressed.
$=3$ : both node and element printing are suppressed.

Number of time steps between writing global statistics data to D3HSP file. $($ Default $=1000$.)

Performs suppression of output echo. Values for opt are either "on" or "off". (LS-910 and later).

Print flag for element time step sizes on first cycle. Values for opt are either "on" or "off". (LS-910 and later).

Terminate the D3HSP command.

## DBQT $i$

DELT $\Delta t$

DHGQ $Q h$
DHQT $i$

DQL $Q l$
DQQ Qq

## DROPTS

## Options:

## DRFCTR $d$

DRTOL tol

NRCYCK $n$

TSSFDR tssfdr

DRTERM $t$

Damping factor expressed as $V_{n+1}=d^{*} V_{n}$. This should be set with care based on the formulas in the DYNA3D Course Notes. (Method B)

Tolerance on distortional kinetic energy for determining convergence. (Method B)

Number of time steps between convergence checks. (Method B)

Time step scale factor during dynamic relaxation. (Method B)

Termination time for dynamic relaxation simulation should convergence not be obtained.
(default $=$ infinity). (LS-910 and later). (Method B)
;

## FLUID

## Options:

ADVECTION opt	Set the advection formulation. $\begin{aligned} & o p t=1: \text { first order. (SALE Method) } \\ & o p t=2: \text { second order. (Benson HIS) } \\ & o p t=3: \text { second order. (Van-Leer) } \end{aligned}$
ALE	The element formulation is Arbitrary LagrangianEulerian.
EULERIAN	The element formulation is Eulerian.
LAGRANGIAN	The element formulation is Lagrangian (default).
MAT $m$	These options apply to material $m$. (The default is that the specified fluid options apply globally to the model.)
NCYCLES $n$	The number of cycles between smoothing and advection (ALE) or smoothing (Eulerian) is $n$.
RELAX1 $r_{1}$	Weight for simple average relaxation method.
RELAX2 $r_{2}$	Weight for Kikuchi relaxation method.
RELAX3 $r_{3}$	Weight for isoparametric relaxation method.
RELAX4 $r_{4}$	Weight for equipotential relaxation method.
START $t_{s}$	Start time for ALE.
$\boldsymbol{S T O P} t_{e}$	Stop time for ALE.
;	End of dynamic relaxation options.
ES $m_{1} m_{2} \ldots$;	Perform a full restart. Materials $m_{1}, m_{2}, \ldots$ are to be remapped. If "FRES ;" is input, then all materials will be remapped.

End of dynamic relaxation options.
Set ALE and Eulerian options. (VECALE, LS930 and later.)

The element formulation is Arbitrary LagrangianEulerian.

The element formulation is Eulerian.
The element formulation is Lagrangian (default).
These options apply to material $m$. (The default is that the specified fluid options apply globally to the model.)

The number of cycles between smoothing and advection (ALE) or smoothing (Eulerian) is $n$.

Weight for simple average relaxation method.
Weight for Kikuchi relaxation method.
Weight for isoparametric relaxation method.
Weight for equipotential relaxation method.
Start time for ALE.
Stop time for ALE.
End of dynamic relaxation options.
Perform a full restart. Materials $m_{1}, m_{2}, \ldots$ are to be remapped. If "FRES ;" is input, then all materials will be remapped.

GMPRT

## Options:

Input general printing option intervals. (LS-910 and later).

ABSTAT $t$
AVSFLT $t$
BCOUT $t$
BELT $t$
DEFGEO $t$
DEFORC $t$
ELOUT $t$
GEFORC $t$
GLSTAT $t$
JOINTS $t$
MATSUM $t$
MOVIE $t$
MPGS $t$
NCFORCE $t$
NFG $t$
NODOUT $t$
RBOUT $t$
RCFORC $t$
RWFORC $t$
SECFORCE $t$
SIDB $t$
SPCFORC $t$
SWFORC $t$
TRACER
VARIABLE typ icomp
;

GRAV $g_{x} g_{y} g_{z}$
HGENERGY on/off

IARB on/off

IRDMS on/off

ITSS $t_{0}$

Airbag statistics.
AVS filter.
Boundary condition forces.
Seat belt output file.
Smug animator file.
Discrete element.
Element data.
Geometric entity resultants.
Global data.
Joint file.
Material energies.
Movie-BYU output file.
MPGS output.
Nodal interface forces.
Nodel force groups.
Nodal point data.
Rigid body acceleration output.
Resultant interface forces.
Rigid wall forces.
Section forces.
Sliding interface database.
SPC reaction forces.
Nodal constant resultants.
Components for ASCII state output. typ can be AVS, MOVIE or MPGS. The component number is icomp.
Terminate this command.
Gravity acceleration vector.
Option for computing hourglass energy dissipation. (Default=Off.) (LS-910 and later).

Selection for material input method. If on, then the material input is broken into separate constitutive model, equation-of-state and section property sections. LS-INGRID can convert from one method to another during generation. The last method selected applies to the output file. (Default=Off.) (LS-910 and later).

Turn on deformable to rigid switching. (LS-920 and later.)

Initial time step size. This is optional input for LS-DYNA3D. If $t_{o}$ is zero, LS-DYNA3D picks the initial time step size.

LCDAMP lc	System damping is specified by load curve lc. (LS-902 and later).
LCGX $\operatorname{lcg} x$	Load curve number for $X$-body load. (default=1).
LCGY lcgy	Load curve number for $Y$-body load. (default=1).
LCGZ $\operatorname{lcg} z$	Load curve number for Z-body load. (default=1).
LCRX 1crx	Load curve number for $X$-centrifugal load. (default=1).
LCRY lcry	Load curve number for $Y$-centrifugal load. (default=1).
LCRZ 1crz	Load curve number for $Z$-centrifugal load. (default=1).
LCMAX $l c$	$l c$ is a load curve which specifies the maximum time step as a function of time.
MVMA	Output is generated which is compatible with MVMA-DYNA3D.
NCPU $n$	Use n CPU's for parallel processing. (LS-920 and later.)
NEWC	Use new contact formulations. (LS-902, VEC/DYNA3D). This turns on the eroding contact in VEC/DYNA3D.
NSTEP $n$	The number of time steps for mass scaled calculations is $n$. Note that this is an advanced option and normally LS-DYNA3D sets the time step. Study the mass scaling option in LSDYNA3D before using this option. (LS-910 and later).
OPIFS $n$	Output interval for interface file.
PASS opt	Option for sorting parallel assembly of the right hand side. Values for opt are "on" or "off". (LS-920 and later).
PERCENT $n$	Maximum allowable change in total energy in percent.
PLTI $\Delta t$	Node and element data dump interval for TAURUS post-processing.
PRTI $\Delta t$	Node and element data dump interval for high

speed printer.
PSPO iopt
R2D $m_{1} m_{2}$

RDENERGY on/off

RDMT $m$

RDSI $s$

REIN $i$

REST name

RHVC $h$

RIRDMS on/off

## RLBV $l$

RNUM $n$
RPLT $t$

## RPRT $t$

Plane stress iteration flag.
$=1$ : iterative plasticity with 3 secant iterations (default).
=2: full iterative plasticity.
=3: radial return non-iterative plasticity. (quick and very dirty.)

Convert material $m_{1}$ from rigid to deformable. If a restart file definition has been initiated, then this command applies to the restart. Otherwise, it applies to the main DYNA3D input. (LS-920 and later.)

Option for computing stone wall energy dissipation. (Default=Off.) (LS-910 and later).

Delete material $m$. This applies to the restart number selected by the RNUM command.

Delete sliding interface $s$. This applies to the restart number selected by the RNUM command.

Hughes-Liu shell normal initialization count. $i=-2$ : unique nodal fibers per Hughes-Liu $=-1$ : compute normals each cycle (default).
$=1$ : compute on restart.
$=n$ : compute on restart and every nth cycle.
Set the family name for restart input file generation to name.

The default hourglass viscosity for restart is set to $h$. This applies to the restart number selected by the RNUM command.

Turn on rigid to deformable switching. (LS-920 and later.)

The default linear bulk viscosity for restart is set to $l$. This applies to the restart number selected by the RNUM command.

Restart commands apply to restart number $n$.
The plot interval for restart is set to $t$. This applies to the restart number selected by the RNUM command.

The print interval for restart is set to $t$. This applies to the restart number selected by the RNUM command.

RQBV $q$

RTERM $t$

RTSF

RWPNAL $p$

SBRF $n$

SEQUENTIAL

SFSI $s$
SIOPT

## Options:

ENER opt

CHECK opt

OFFSET $n$

ORIE opt

PSOPT $n$

The default quadratic bulk viscosity for restart is set to $q$. This applies to the restart number selected by the RNUM command.

The termination time for this restart is $t$. This applies to the restart number selected by the RNUM command.

The time step scale factor for restart is set to $s$. This applies to the restart number selected by the RNUM command.

Scale factor for rigid body nodes impacting rigid walls. If $p=0.0$, then this capability is ignored.

Number of time steps between restart dumps is $n$.

Use sequential node, element and material numbering. (Default)

Sliding interface scale factor $($ default $=0.1)$.
Additional sliding interface options. (LS-910 and later).

Option for determining sliding interface energy dissipation. Values for opt are "on" and "off".

Option for performing initial penetration checks on contact interfaces. Values for opt are "on" and "off".

Set shell thickness offset option to n :
$=0$ : thickness is not considered in two surface contacts.
$=1$ : thickness is considered but rigid bodies are excluded.
$=2$ : thickness is considered including rigid bodies.

Option for automatically reorienting normals of shell contact segments during initialization.
Values for opt are "on" and "off".
Penalty stiffness option:
$=1$ : use minimum of master segment and slave node (default).
$=2$ : use master segment stiffness (old way).
$=3$ : use slave node value.
$=4$ : use slave node value area or mass
weighted.
$=5$ : same as 4 but inversly proportional to the shell thickness.

THIN opt
;
SRUL n

## Options:

MATE
NPTS $n t_{1} w_{1}<m_{1}>\ldots$

$$
t_{n} w_{n}<m_{n}>
$$

STYP $s$

## SWENERGY on/off

SYSD $d$

## TAURUS

## Options:

CMSO opt

DRDB opt

IFDT D $t$

Option for including thinning of shells in thickness offsets. Values for opt are "on" and "off".

Terminate SIOPT command.
Begin definition of user specified integration rule for shell number $n$.

Include optional material selection. (default=off)
Input $n$ integration points with the parametric coordinate, $t$, the weight, $w$ and the optional material number, $m$. This terminates the rule.

Default shell formulation type
$s=$ HUGHES: use Hughes-Liu shell formulation (default).
= BELYTSCHKO: use Belytschko-LinTsay shell theory.

Option for computing stone wall energy dissipation. (Default=Off.) (LS-910 and later).

System damping constant $d$.
(MVMA/DYNA3D, VEC/DYNA3D, LS-902 and later.)

Additional ouput options for the D3PLOT, D3IFF and D3THDT files.

Output averaged accelerations from velocities in file "nodout" and the time history database file, "d3thdt". (LS-910 and later).

Composite material stress output option. Values for opt are "global" and "local". (LS-910 and later).

Produce a separate TAURUS database for the dynamic relaxation option. Values for opt are "on" or "off". (LS-910 and later).

Output interval for interface force database. If zero, the default is the same as for complete state dumps.

TERM $t$
TINV $n$

TSLIMIT $\Delta t$

TSORT opt

Number of additional integration point history variables written to the TAURUS database for shell elements.

Number of additional integration point history variables written to the TAURUS database for solid elements.

Option for separating D3PLOT file into one state per family output member. Values for opt are "on" or "off". (LS-910 and later).

Number of through thickness integration points written to TAURUS database. (default=3).

Terminate TAURUS command options.
The termination cycle is $n$. (LS-910 and later).
Thermal effects option
$=0$ : no thermal effects.
$=\mathrm{N}$ : nodal temperatures are defined in input and are scaled according to a time function. N is the load curve number.
$=-1$ : each time step a new temperature state is read from a disk file. The time word at the beginning of each temperature state is ignored.
$=-2:$ at each time step a temperature state is interpolated from the temperature state in a disk file. Therefore the time words at the beginning of each temperature state is used.
$=-3$ : the disk file containing temperatures has only one state. The initial state is assumed to be zero.

Terminate dynamic time integration at time $t$.
Number of time steps between dumps of reaction history blocks.

The minimum time step for shell elements of type $3,18,19$ and 24 cannot go below $\Delta t$. To enforce this condition, the element stiffness is artificially softened. This is useful when pretty pictures are more important than good results.

Sort triangular elements to treat degenerate quadrilateral elements with the $C_{0}$ triangular shell formulation. Values for opt are "on" or "off". (LS910 and later).

TSSF $s$
TUPD

V90

## V91

## VEC

## VEC92

WARP ang

## WEDGE

Scale factor on time step size.
Modify shell thickness based on membrane strains (default doe not modify shell thickness).

Output is compatible with LS-DYNA3D version 902.

Output is compatible with LS-DYNA3D version 910.

Output is compatible with LS-DYNA3D version 920.

Output is compatible with LS-DYNA3D version 930. This produces the LS-DYNA3D keyword based input.

Output is compatible with VEC-DYNA3D.
Output is compatible with VECALE.
Shell element warpage angle in degrees. If a warpage greater than this angle is found, a warning message is printed. (default=20.0) (LS-902 and later).

Normally, LS-INGRID does not allow the generation of wedge elements. This command turns on the support for 6-node and 4-node solid elements.

### 20.1 LS-DYNA3D MATERIAL InPUT

LS-DYNA3D material input is possible after the DN3D command is input (see Control Commands). The form of this input is: MAT $n$ TYPE $m$ \{options specific to material type $m$ \} \{general material options\} ENDMAT. $n$ is a material name which is assigned a number as input. Therefore, the materials should be defined in order before any additional use of materials is made.

### 20.2 General Material Options

ANGLES $\beta_{1} \beta_{2} \ldots \beta_{n}$
Input angles for laminated materials. $n$ is the number of integration points; thus, this command cannot be used until after the QUAD command has been used to specify the number of integration points for the current material.

BEAM	This material is defined for two node beam elements only.
BFORM $s$	$\begin{aligned} & \text { Beam formulation type } \\ & \text { s = "HUGH": Hughes-Liu } \\ & \text { s = "BELY": Belytschko-Schwer } \\ & \text { s = "TRUS": Truss } \end{aligned}$
BQL $Q_{l}$	Change linear bulk viscosity for . 06 to $Q_{l}$.
$\mathrm{BQQ} Q_{q}$	Change quadratic bulk viscosity from 1.5 to $Q_{q}$.
BRFORM $s$	Brick element formulation type (LS-920 and later):   $\mathrm{s}=1$ : standard single point brick   $s=2$ : fully integrated brick element
BQT $i$	Change bulk viscosity type from 1 to $i$ : $=1$ : standard LS-DYNA3D (not much choice)
CAREH $a$	Cross sectional area for Belytscko-Schwer beam.
EOS eost	Begin defining equation-of-state type eost for the current material definition. Each equation-of-state is terminated by the ENDEOS command.
HEAD	Replace default heading (typed on the next line).
HGQ $Q_{h}$	Change hourglass viscosity from . 10 to $Q_{h}$.
HGQT $i$	Change type of hourglass viscosity from 1 to $i$ :   $=1$ : standard LS-DYNA3D   =2: Flanagan-Belytschko viscous form =3: Flanagan-Belytschko viscous form with exact volume integration.   =4: Flanagan-Belytschko stiffness form =5: full Flanagan-Belytschko stiffness form with exact volume integration.
IMGL	Initialize material for gravity loads.
IRR Ir r	Moment of area along $r$-axis for BelytschkoSchwer beam.
IRULE GAUSS	Use gauss quadrature (default).
IRULE TRAPEZOIDAL	Use trapezoidal integration.
IRULE USER $n$	Use user defined integration rule $n$.
ISS Iss	Area moment of inertia along $s$-axis for
	20.12


	Belytschko-Schwer beam.
ITT $1 t t$	Area moment of inertia along $t$-axis for Belytschko-Schwer beam.
LTMN	The local $t$-axis for thick shell elements of this material is the shortest direction through the brick.
LTMX	The local $t$-axis for thick shell elements of this material is the longest direction through the brick.
MAT $m$	Begin material definition $m$. Each material definition is terminated by the ENDMAT command.
MDMP lc scale	Apply mass weighted damping to material mat. The magnitude is scale which is multiplied by load curve lc. (LS-920 and later.)
QUADRATURE $i$	Select quadrature rule $i$.
	For beams the rules are: $\begin{aligned} & i=1: \text { truss element } \\ & i=2: 2 \times 2 \text { Gauss (default) } \\ & i=3: 3 \times 3 \text { Gauss } \\ & i=4: 3 \times 3 \text { Lobatto } \\ & i=5: 4 \times 4 \text { Gauss } \end{aligned}$
	For four node shells the rules are:   $i=1$ : membrane element   $i=2$ : 2 point Gauss (default)   $i=3$ : 3 point Gauss   $i=4$ : 4 point Gauss   $i=5$ : 5 point Gauss
	For eight node thick shells the rules are:   $i=1$ : membrane element   $i=2$ : 2 point Gauss (default)   $i=3$ : 3 point Gauss   $i=4$ : 4 point Gauss   $i=5$ : 5 point Gauss
RAYD b	Rayleigh (stiffness proportional) damping coefficient. (LS-920 and later.)
REPOSITION	Reposition deformable materials which are positioned relative to CAL3D/MADYMO3D bodies at initialization time. (LS-920 and later)

## Options:

PLANE $n$
SEGMENT $n$
SYSTEM $n$

## $\mathbf{R O} m$

SAREA $a$
SFORM $s$

SHELL

SLOC $s$

STHICK thick

TLOC $t$

TSHELL

TTHICK thick

TYPE $n$

Slave to MADYMO3D plane $n$.
Slave to CAL3D segment $n$.
Slave to MADYMO3D system $n$.
Density (required - no default).
Shear area for Belytschko-Schwer beam.
Shell formulation type
$s=$ "HUGH": Hughes-Liu.
$s=$ "BELY": Belytschko-Lin-Tsay
$s=$ "BCZ": BCIZ triangular shell
$s=$ "C0T": $C_{0}$ triangular shell.
$s=$ "MEMB": B-L-T membrane.
$s=$ "SRHL": S/R Hughes-Liu
$s=$ "CRHL": Corotational Hughes-Liu.
$s=$ "YASE": Engelmann-Whirley's
"YASE" shell. (Not recommended.)
This material is defined for four node shell elements only.

Factor specifying offset of the local $s$ axis.
$=-1$ : reference surface is at bottom plane of shell.
$=0$ : reference surface is at center plane of shell
$=1$ : reference surface is at upper plane of shell

The default thickness along the element local $s$ axis is thick (beams and shell).

Factor specifying offset of the local $t$ axis.
$=-1$ : reference surface is at bottom plane of shell
$=0$ : reference surface is at center plane of shell.
$=1$ : reference surface is at upper plane of shell.

This material is defined for thick (8-node solid) shell elements only.

The default thickness along the element local $t$ axis is thick (beams only).

The current material is of type $n$.

## Material Type 1 (Elastic)

Default heading: Material Type \#1 (Elastic)

Input any two of the following.

BULK $K$
E $E$
G $G$
PR $v$

Material Type 2 (Orthotropic Elastic)

EA $E_{a}$
EB $E_{b}$
EC $E_{c}$
PRBA $v_{b a}$
PRCA $v_{c a}$
PRCB $v_{c b}$
GAB $G_{a b}$
GBC $G_{b c}$
GCA $G_{c a}$
AOPT aopt
$\mathbf{X P} x_{p}$
YP $y_{p}$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

See constitutive matrix below.

Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.

ZP $z_{p}$	Define for AOPT $=1$.
A1 $a_{1}$	Define for AOPT $=2$.
A2 $a_{2}$	Define for AOPT $=2$.
A3 $a_{3}$	Define for AOPT $=2$.
D1 $d_{1}$	Define for AOPT $=2$.
D2 $d_{2}$	Define for AOPT $=2$.
D3 $d_{3}$	Define for AOPT $=2$.
V1 $v_{1}$	Define for AOPT $=3$.
V2 $v_{2}$	Define for AOPT $=3$.
V3 $v_{3}$	Define for AOPT $=3$.

The material law that relates stresses to strains is defined as:

$$
\underset{\sim}{\mathrm{C}}={\underset{\sim}{\mathrm{T}}}^{\top} \underset{\sim}{\mathrm{C}} \underset{\sim}{\mathrm{~L}} \mathrm{~T},
$$

where $\backslash \mathrm{o}(\mathrm{T}, \underset{\sim}{ })$ is a transformation matrix, and $\backslash \mathrm{o}\left(\mathrm{C}, \sim_{\sim}\right) \mathrm{L}$ is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, $a, b$, and $c$. The inverse of $\backslash o\left(C,{ }_{\sim}\right) \mathrm{L}$ is defined as

$$
{\underset{\sim}{c}}_{C^{-1}}^{\sim}=\left[\begin{array}{cccccc}
\frac{1}{E_{a}} & -\frac{V_{b a}}{E_{b}} & -\frac{v_{c a}}{E_{c}} & 0 & 0 & 0 \\
-\frac{v_{a b}}{E_{a}} & \frac{1}{E_{b}} & -\frac{v_{c b}}{E_{c}} & 0 & 0 & 0 \\
-\frac{v_{a c}}{E_{a}} & -\frac{V_{b c}}{E_{b}} & \frac{1}{E_{c}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{a b}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{b c}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{c a}}
\end{array}\right]
$$

Note that $\frac{V_{a b}}{E_{a}}=\frac{V_{b a}}{E_{b}}, \frac{V_{c a}}{E_{c}}=\frac{V_{a c}}{E_{a}}, \frac{V_{c b}}{E_{c}}=\frac{V_{b c}}{E_{b}}$.


AOPT=0.0 default

(c)


AOPT=2.0 define $\mathbf{a}$ and $\mathbf{d}$


$$
\mathrm{AOPT}=3.0
$$

Figure 20-1. Options for determining principal materials axes: (a) AOPT $=0.0$, (b) AOPT $=$ 1.0, and (c) $\mathrm{AOPT}=2.0$, (d) $\mathrm{AOPT}=3.0$.

## Material Type 3 (Kinematic/Isotropic Elastic/Plastic)

Default heading: Material Type \#3 (Elastic-Plastic)

Input any two of the following:

## BULK $K$

E $E$
G $G$
$\mathbf{P R}_{V}$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Additional Options:

SIGY $\sigma_{y}$
ETAN $E_{t}$
BETA $\beta^{\prime}$
SC $c$
SP $p$

Yield stress
Hardening modulus
Hardening parameter, $0 \leq \beta^{\prime} \leq 1$
Strain rate parameter, C
Strain rate parameter, $p$

Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor

$$
1+\left(\frac{d}{C}\right)^{y p}
$$

where $\varepsilon$ is the strain rate.
Isotropic, kinematic, or a combination of isotropic and kinematic hardening may be specified by varying $\beta^{\prime}$ between 0 and 1 . For $\beta^{\prime}$ equal to 0 and 1 , respectively kinematic and isotropic hardening are obtained as shown in Figure 20-2. Effective stress is defined in terms of the deviatoric stress tensor, $\mathrm{S}_{\mathrm{ij}}$ as:

$$
\bar{\sigma}=\left(\frac{3}{2} \mathrm{~S}_{\mathrm{j}} \mathrm{~S}_{\mathrm{j}}\right)^{1 / 2}
$$

where,

$$
\mathrm{S}_{\mathrm{ij}}=\sigma_{\mathrm{ij}}-\frac{1}{3} \sigma_{\mathrm{kk}} \delta_{\mathrm{ij}}
$$

and effective plastic strain by:

$$
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}} \mathrm{~d} \bar{\varepsilon}^{\mathrm{p}}
$$

where t denotes time and

$$
\mathrm{d} \bar{\varepsilon}^{\mathrm{p}}=\left(\frac{2}{3} \mathrm{~d} \varepsilon_{\mathrm{ij}}^{\mathrm{p}} \mathrm{~d} \varepsilon_{\mathrm{ij}}^{\mathrm{p}}\right)^{1 / 2}
$$

For isotropic hardening $\left(\beta^{\prime}=1\right)$ material model 12 requires less storage and is more efficient.


Figure 20-2. Elastic-plastic behavior with isotropic and kinematic hardening where $l_{0}$ and $l$ are undeformed and deformed length of uniaxial tension specimen.

## Material Type 4 (Thermo-Elastic-Plastic)

Default heading: Material Type 4 (Thermo-Elastic-Plastic)

NPTS $n$
TEMP $T_{1} T_{2} \ldots T_{n}$
$\mathbf{E} E_{1} E_{2} \ldots E_{n}$
PR $v_{1} v_{2} \ldots v_{n}$
ALPHA $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$
SIGY $\sigma_{y 1} \sigma_{y 2} \ldots \sigma_{y n}$
ETAN $E_{t 1} E_{t 2} \ldots E_{t n}$

Number of temperature values for which material constants are defined.
Temperatures.
Young's moduli.
Poisson's ratios.
Coefficients of thermal expansion.
Yield stresses.
Tangent moduli.

## Material Type 5 (Soil and Crushable Foam)

Default heading: Material Type 5 (Soil and Crushable Foam)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Additional Options:

AO $a_{0}$
A1 $a_{1}$
A2 $a_{2}$
PC $P_{c}$
UL uopt

ULD $d$
NPTS $n$
VS $\varepsilon_{v 1} \varepsilon_{v 2} \ldots \varepsilon_{v n}$
$\mathbf{P} p_{1} p_{2} \ldots p_{n}$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Yield function constant
Yield function constant
Yield function constant
Pressure cutoff for tensile fracture
Unloading option
$=0$ : volumetric crushing
$=1$ : loading and unloading are the same.
$=2$ : hysteretic behavior.
Unloading distance for option 2 above.
Number of points in volumetric strain versus pressure curve ( $n £ 10$ ).
Volumetric strain values
Pressures corresponding to volumetric strain values

The deviatoric, perfectly yield function, $\phi$, is described in terms of the second invariant $J_{2}$.

$$
J_{2}=\frac{1}{2} s_{\mathrm{j}} \mathrm{~s}_{\mathrm{ij}}
$$

Pressure, $p$, and constants $a_{0}, a_{1}$, and $a_{2}$ as:

$$
\phi=J_{2}-\left[a_{0}+a_{1} p+a_{2} p^{2}\right]
$$

On the yield surface, $J_{2}=\frac{1}{3} \sigma_{y}^{2}$, where $s_{y}$ is the yield stress, i.e.,

$$
\left.\sigma_{y}=\mid 3\left(a_{0}+a_{1} p+a_{2} p^{2}\right)\right]^{1 / 2}
$$

For elastic-perfectly plastic behavior $a_{1}=a_{2}=0$, and $\left(3 a_{0}\right)^{1 / 2}$ defines the yield strength. The volumetric strain is given by the natural logarithm of the relative volume $V$. If the pressure drops below the cutoff value, PC , then it is reset to that value.


Figure 20-3. Volumetric strain versus pressure curve for soil and crushable foam model.

## Material Type 6 (Viscoelastic)

G $G_{0}$	Short term shear modulus.
GI $G^{,}$	Long term shear modulus.
K $K$	Bulk modulus.
BETA $\beta$	Decay constant.

The shear relaxation behavior is described by:

$$
\mathrm{G}(\mathrm{t})=\mathrm{G}+\left(\mathrm{G}_{0}-\mathrm{G}\right) \mathrm{e}^{-\beta \mathrm{t}}
$$

A Jaumann rate formulation is used:

$$
\stackrel{\nabla}{\sigma_{\mathrm{ij}}^{\prime}}=2 \int_{0}^{\mathrm{t}} \mathrm{G}(\mathrm{t}-\tau) \mathrm{D}_{\mathrm{ij}}^{\prime}(\tau) \mathrm{dt}
$$

where the prime denotes the deviatoric part of the stress rate, $\stackrel{\nabla}{\sigma}_{i j}$, and the strain rate $D_{I J}$.

Material Type 7 (Blatz-Ko Rubber)

Default heading: Material Type \#7 (Rubber)

G G
Shear modulus.

The second Piola-Kirchhoff stress is computed as

$$
\mathrm{S}_{\mathrm{ij}}=\mu\left(\frac{1}{\mathrm{~V}} \mathrm{C}_{\mathrm{ij}}-\mathrm{V}^{-1 / 1-2 v} \delta_{\mathrm{ij}}\right)
$$

where $V$ is the relative volume, $C_{i j}$ is the right Cauchy-Green strain tensor, and $n$ is the Poisson's ratio which is set to .463 internally. This stress measure is transformed to the Cauchy stress, $s_{i j}$, according to the relationship

$$
\sigma_{\mathrm{ij}}=\mathrm{V}^{-1} \mathrm{~F}_{\mathrm{ik}} \mathrm{~F}_{\mathrm{jl}} \mathrm{~S}_{\mathrm{lk}}
$$

where $F_{i j}$ is the deformation gradient tensor.

## Material Type 8 (High Explosive Burn)

Default heading: Material Type \#8 (High Explosive Burn)
D $D$
Detonation velocity.
PCJ $P_{C J}$
Chapman-Jouget pressure.

This material model requires an equation-of-state.

## Material Type 9 (Null Material)

Default heading: Material Type \#9 (Null Material)

$\mathbf{P C ~ p c}$	Pressure cutoff.
MU $\mu$	$\mu$.

The null material must be used with an equation-of-state. Pressure cutoff is negative in tension. A viscous stress of the form

$$
\sigma_{\mathrm{ij}}=\mu \check{\varepsilon}_{\mathrm{ij}}
$$

is computed for nonzero m where $\mathcal{Y}_{\mathrm{ij}}$ is the deviatoric strain rate.

## Material Type 10 (Isotropic-Elastic-Plastic-Hydrodynamic)

Default heading: Material Type \#10 (Isotropic-Elastic-Plastic-Hydrodynamic)

G $G$
SIGY $\sigma_{y}$
EH $E_{h}$
$\mathbf{P C} p_{c}$ or $-\sigma_{f}$
A1 $a_{1}$
A2 $a_{2}$
NPTS $n$
$\mathbf{E S} \sigma_{y 1} \sigma_{y 2} \ldots \sigma_{y n}$

Shear modulus
Yield strength
Plastic hardening modulus
Pressure cutoff
$=0$ : cutoff of $-^{\prime}$ is assumed
Yield function constant
Yield function constant
Number of points in yield stress-effective plastic strain curve or yield stress-pressure curve.
Yield stress
$\operatorname{EPS} \varepsilon_{p 1} \varepsilon_{p 2} \ldots \varepsilon_{p n}$
$\mathbf{P} p_{1} p_{2} \ldots p_{n}$
FS $\varepsilon_{f}$

Effective plastic strain
Pressure
Failure strain

If the yield stress-plastic strain curve is not defined and if $a_{1}=a_{2}=0$, the bilinear stress-strain curve shown in Figure 20-2 is obtained with $b=1$. The yield strength is calculated as

$$
\sigma_{\mathrm{y}}=\sigma_{0}+\mathrm{E}_{\mathrm{h}} \bar{\varepsilon}^{\mathrm{p}}
$$

where $p$ is the pressure. The quantity $E_{h}$ is the plastic hardening modulus defined in terms of Young's modulus, $E$, and the tangent modulus, $E_{t}$, as follows

$$
\mathrm{E}_{\mathrm{h}}=\frac{\mathrm{E}_{\mathrm{t}} \mathrm{E}}{\mathrm{E}-\mathrm{E}_{\mathrm{t}}}
$$

If the yield stress-plastic strain (pressure) curve is defined, a curve like that shown in Figure 20-4 may be defined. In this latter case, the yield stress and plastic hardening modulus, $a_{1}$ and $a_{2}$ are ignored. Effective stress is defined in terms of the deviatoric stress tensor, $s_{i j}$, as:

$$
\begin{equation*}
\bar{\sigma}=\left(\frac{3}{2} s_{i j} s_{\mathrm{ij}}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

and effective plastic strain by:

$$
\begin{equation*}
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}}\left(\frac{2}{3} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}}\right)^{1 / 2} \mathrm{dt} \tag{2}
\end{equation*}
$$

where $t$ denotes time and $\mathrm{D}_{\mathrm{ij}}^{\mathrm{p}}$ is the plastic component of the rate of deformation tensor. Yield stress may be defined as a function of plastic strain or pressure but not both.


Figure 20-4. Effective stress versus effective plastic strain curve.

## Material Type 11 (Temperature Dependent Elastic-Plastic Hydrodynamic)

Default heading: Material Type \#11 (Temperature Dependent Elastic-Plastic Hydrodynamic)

```
G G
SIGO \sigmao
Shear modulus.
See equations below.
BETA }
N n
GAMA }\mp@subsup{\gamma}{i}{
SIGM 䈎
B b
BP b
H}
F}
A }
TO Tmo
GAMO g
SA }
```

PC pmin or $-\mathrm{s}_{f}$
ECO $E C_{0} \quad$ Cold compression energy coefficients (optional)
EC1 $E C_{1}$
EC2 $E C_{2}$
EC3 $E C_{3}$
EC4 $E C_{4}$
EC5 $E C_{5}$
EC6 $E C_{6}$
EC7 $E C_{7}$
EC8 $E C_{8}$
EC9 $E C_{9}$

If cold compression energy coefficients are not input, then LS-DYNA3D will calculate them based on the equation-of-state.

## SPALL type

Spall type
$=0$ : default set to " 2.0 "
$=1: p 3 p_{\text {min }}$
$=2$ : if $\mathrm{s}_{\max } \geq \mathrm{s}_{f}$ element spalls and tension $p$ $<0$, is never allowed; $\mathrm{s}_{\text {max }}=$ maximum principal stress. $=3$ : if $p<p_{\text {min }}$ element spalls and tension $p<0$, is never allowed.
$=4$ : failure strain

Users who have an interest in this mode are encouraged to study the paper by Steinberg and Guinan [9] which provides the theoretical basis. Another useful reference is the KOVEC user's manual [10].

In terms of the foregoing input parameters, we define the shear modulus, G, before the material melts as:

$$
G=G_{0}\left[1+b p V^{1 / 3}-h\left(\frac{E_{i}-E_{C}}{3 R^{\prime}}-300\right)\right] e^{-f E_{i} / E_{m}-E_{i}}
$$

where $p$ is the pressure, $V$ is the relative volume, $E_{C}$ is the cold compression energy:

$$
\begin{gathered}
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}}\left(\frac{2}{3} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}} \mathrm{D}_{\mathrm{ij}}^{\mathrm{p}}\right)^{1 / 2} \mathrm{dt} \\
x=1-V
\end{gathered}
$$

and $E_{m}$ is the melting energy:

$$
\mathrm{E}_{\mathrm{m}}(\mathrm{x})=\mathrm{E}_{\mathrm{c}}(\mathrm{x})+3 \mathrm{R}^{\prime} \mathrm{T}_{\mathrm{m}}(\mathrm{x})
$$

which is in terms of the melting temperature $T_{m}(x)$ :

$$
\mathrm{T}_{\mathrm{m}}(\mathrm{x})=\frac{\mathrm{T}_{\mathrm{mo}} \exp (2 \mathrm{ax})}{\mathrm{V}^{2\left(\gamma_{\mathrm{o}}-\mathrm{a}-\frac{1}{3}\right)}}
$$

and the melting temperature at $r=r_{0}, T_{m o}$.
In the above equation, $R^{\prime}$ is defined by

$$
\mathrm{R}^{\prime}=\frac{\mathrm{Ro}}{\mathrm{~A}}
$$

where $R$ is the gas constant and $A$ is the atomic weight. If $R^{\prime}$ is not defined, LS-DYNA3D computes it with $R$ in the cm -gram-microsecond system of units.

The yield strength $\sigma_{y}$ is given by:

$$
\sigma_{y}=\sigma_{0}^{\prime}\left[1+b^{\prime} p V^{1 / 3}-h\left(\frac{E_{i}-E_{c}}{3 R^{\prime}}-300\right)\right] e^{-f E_{i} / E_{m}-E_{i}}
$$

if $E_{m}$ exceeds $E_{i}$. Here, $\sigma_{0}{ }^{\prime}$ is given by:

$$
\sigma_{y}=\sigma_{0}^{\prime} \mid 1+\beta\left(\gamma_{i}+\varepsilon^{-p}\right)^{\prime-n}
$$

where $\varepsilon_{i}$ is the initial plastic strain. Whenever $\sigma_{0}{ }^{\prime}$ exceeds $\sigma_{m}, \sigma_{0}{ }^{\prime}$ is set equal to $\sigma_{m}$. After the material melts, $\sigma_{y}$ and $G$ are set to zero.

If the coefficients ECO,...EC9 are not defined above, LS-DYNA3D will fit the cold compression energy to the ten term polynomial expansion:

$$
\mathrm{E}_{\mathrm{C}}=\sum_{\mathrm{i}=0}^{9} \mathrm{EC}_{\mathrm{i}} \eta^{\mathrm{i}}
$$

where $E C_{i}$ is the $i$ th coefficient and $\mathrm{h}=\mathrm{r} / \mathrm{r}_{0}-1$. A least square method is used to perform the fit.

## Material Type 12 (Isotropic-Elastic-Plastic)

Default heading: Material Type \#12 (Isotropic-Elastic-Plastic)

Input any two of the following:

BULK $K$
E $E$
G $G$

Bulk modulus.
Young's modulus.
Shear modulus.

PR v

Additional Options:

SIGY $\sigma_{y}$
EH Eh

Yield strength.
Hardening modulus.

Pressure is integrated in time

$$
\stackrel{\dot{p}}{ }=-K \frac{V}{V}
$$

where V is the relative volume. This model is recommended for brick elements but not for shell elements since it is not too accurate.

## Material Type 13 (Elastic-Plastic with Failure Model)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Additional Options:
SIGY $\sigma_{y}$
EH $E_{h}$
$\mathbf{F S} \varepsilon_{f}$
FP $p_{f}$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

When the effective plastic strain reaches the failure strain or when the pressure reaches the failure pressure, the material loses its ability to carry tension and the deviatoric stresses are set to zero, i.e., the material behaves like a fluid.

## Material Type 14 (Soil and Crushable Foam with Failure Model)

The input for this model is the same as for material type 5; however, when the pressure reaches the failure pressure, the element loses its ability to carry tension.

## Material Type 15 (Johnson/Cook Plasticity Model)

G $G$
A $A$
B $B$
$\mathbf{N} n$
$\mathbf{R} r$
M $m$
$\mathbf{T M} T_{\text {melt }}$
TO To
EPSO Eo
HCP $c$
PC $p c$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
D4 $d_{4}$
D5 $d_{5}$
IT $i$

Shear modulus.
See equation (1).
Melt temperature
Room temperature.
Effective plastic strain rate.
Specific heat.
Pressure cutoff (pc < 0.0).
See equation (2).
Iteration options:
$=0$ : no iterations.
=1: LS-DYNA3D iterates to determine a more accurate point on the stress-strain curve.

The Johnson/Cook model is described in reference [11]. This model includes strain rate hardening, thermal softening, and has a complex damage model. The equations describing the flow stress vs. effective plastic strain and failure strain are as follows:

$$
\sigma_{y}=\left(A+B \bar{\varepsilon}^{\mathrm{p}^{n}}\right)\left(1+\mathrm{c} \ln \bar{\varepsilon}^{*},\left(1-\mathrm{T} * \mathrm{~m}^{\prime}\right)\right.
$$

where $A, B, C, n$, and $m$ are input constants,

$$
\bar{\varepsilon}^{\mathrm{p}} \text { effective plastic strain }
$$

$d^{\prime} *=\frac{\frac{\dot{\varepsilon}^{\prime}}{} \mathrm{p}}{\dot{\varepsilon}_{0}}$ effective plastic strain rate for $\dot{\varepsilon}_{0}=1 \mathrm{~s}^{-1}$
$T^{*}=T_{r} / T_{m}=$ homologous temperature

Constants for a variety of materials are also provided in [11].
Due to the nonlinearity in the dependence of flow stress on plastic strain, an accurate value of the flow stress requires iteration for the increment in plastic strain. However, by using a Taylor series expansion with linearization about the current time, we can solve for $\mathrm{s}_{y}$ with sufficient accuracy to avoid iteration.

The strain at fracture is given by

$$
\left.\varepsilon^{f}=\left\lfloor D_{1}+D_{2} \exp D_{3} \sigma^{*} \mid 1+D_{4} \ln \varepsilon^{*}\right] \mid 1+D_{5} T^{*}\right\rfloor
$$

where $s^{*}$ is the ratio of pressure divided by effective stress:

$$
\sigma^{*}=\frac{\mathrm{p}}{\sigma_{\mathrm{eff}}}
$$

Fracture occurs when the damage parameter

$$
\mathrm{D}=\sum \frac{\Delta \bar{\varepsilon}^{\mathrm{p}}}{\varepsilon^{\dagger}}
$$

reaches the value of 1 .

## Material Type 16 (Pseudo Tensor Geological Model)

Default heading: Material Type \#16 (Pseudo Tensor Geological Model)

G $G$
PR $v$
SIGF sigf

A0 $a_{0}$
A1 $a_{1}$
A2 $a_{2}$
A0F $a_{0 f}$

Shear modulus (constant Shear modulus model).
Poisson's ratio (constant Poisson's ratio model).
Tensile cutoff. (Maximum principal stress for failure.)
Cohesion.
Yield function constant.
Yield function constant.
Cohesion for failed material.

A1F $a_{1 f}$	Pressure hardening coefficient for failed   material.
B1 $b_{1}$	Damage scaling factor.
PER $p$	Percent reinforcement.
ER $E_{r}$	Elastic modulus for reinforcement.
PR $v_{r}$	Poisson's ratio for reinforcement.
SIGY $\sigma_{y}$	Initial yield strength.
ETAN $E_{t}$	Tangent modulus.
LCP $l c_{1}$	Load curve giving rate sensitivity for principal
	material.
LCR $l c_{2}$	Load curve giving rate sensitivity for   reinforcement.
NPTS $n$	Number of points in yield stress-effective plastic   strain curve or yield stress-pressure curve;
	$(n £ 16)$.
ES $\sigma_{1} \sigma_{2} \ldots \sigma_{n}$	Yield stress.
EPS $\varepsilon_{p 1} \varepsilon_{p 2} \ldots \varepsilon_{p 3}$	Effective plastic strain.
P $p_{1} p_{2} \ldots p_{n}$	Pressure.

See the LS-DYNA3D manual for a description of this model.

## Material Type 17 (Elastic Plastic with Failure Model)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Additional Options:

SIGY $\sigma_{y}$
EH $E_{h}$
FS $\varepsilon_{f}$

Yield strength.
Plastic hardening modulus.
Failure stress.

Model 17 can fail in two ways. In hydrostatic tension, the element will fail when the failure stress is exceeded. The element will then allow hydrostatic compressive loads only.

If the effective stress exceeds the failure stress, the element will form a fracture plane and retain part of its strength.

## Material Type 18 (Power Law Plasticity)

Input any two of the following:
BULK $K$
Bulk modulus.
E $E$
Young's modulus.
G $G$
Shear modulus.
PR $v$
Poisson's ratio.

## Additional Options:

K $k$
M $m$
$\mathbf{S C} c$
SP $p$

See equation below
See equation below.
Strain rate parameter, $C$.
Strain rate parameter, $p$.
***missing***
Elastoplastic behavior with isotropic hardening is provided by this model. The yield stress, $\sigma_{\mathrm{y}}$, is a function of plastic strain and obeys the equation:

$$
\sigma_{y}=k\left(\varepsilon_{e}+\bar{\varepsilon}^{p^{n}}\right.
$$

$\varepsilon_{\mathrm{e}}$ is the elastic strain to yield and where $\bar{\varepsilon}^{\mathrm{p}}$ is the effective plastic strain. The strain-rate parameters are defined in material type 3 .

## Material Type 19 (Strain Rate Sensitive Plasticity)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Additional Options:

ECRV $l c$
ETAN $e_{t a n}$
FCRV $l c$

SIGY lc
TCRV $l c$

TDEL D $t$

Load curve describing Young's modulus as a function of strain rate.
Tangent hardening modulus.
Load curve describing failure stress as a function of strain rate.
Load curve describing yield as a function of strain rate.
Load curve describing tangent modulus as a function of strain rate.
Minimum time step. (This is for element deletion).

In this model, a load curve is used to describe the yield strength, $\mathrm{s}_{0}$, as a function of effective strain rate,
and the prime denotes the deviatoric component. The yield stress is defined as

$$
\sigma_{\mathrm{y}}=\sigma_{0}\left(\mathcal{c}^{\prime}\right)^{\prime}+\mathrm{E}_{\mathrm{h}} \bar{\varepsilon}^{\mathrm{p}}
$$

where $\bar{\varepsilon}^{\mathrm{p}}$ is the effective plastic strain and $E_{h}$ is given by

$$
\mathrm{E}_{\mathrm{h}}=\frac{\mathrm{E} \mathrm{E}_{\mathrm{t}}}{\mathrm{E}-\mathrm{E}_{\mathrm{t}}}
$$

## Material Type 20 (Rigid Body)

All elements with the same material number become a single rigid body if the material is type 20 whether the elements are connected or not. Density and two independent material strength constants are required to establish penalties for contact surfaces and joints.

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Additional Options:
DEFG

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

The rigid body is defined in the global system used by CAL3D/MADYMO3D. (LS-920)

DEFL

ELLIPSE $m$

MESH

MSLAV $m$

PLANE $m$

SYSTEM $n$

VDA
$\operatorname{AVEC} a_{x} a_{y} a_{z}$

VVEC $v_{x} v_{y} v_{z}$

The rigid body is defined in the local system used by CAL3D/MADYMO3D. (LS-920)

The rigid body is slaved to MADYMO3D ellipsoid $m$. (LS-920)

Generate a mesh for the CAL3D/MADYMO3D coupled rigid body. (LS-920)

The rigid body is slaved to CAL3D rigid body number $m$. (LS-920)

The rigid body is slaved to MADYMO3D plane m. (LS-920)

The rigid body is slaved to MADYMO3D system $n$. (LS-920)

The rigid body is characterized by a VDA surface geometry. (LS-920)

Define the vector a for the rigid body local system.

Define the vector $\mathbf{v}$ for the rigid body local system.

## Material Type 21 (Thermal Orthotropic)

EA $E_{a}$
EB $E_{b}$
$\mathrm{EC} E_{c}$
PRBA $v_{b a}$
PRCA $v_{c a}$
PRCB $v_{c b}$
GAB $G_{a b}$
GBC $G_{b c}$
GCA $G_{c a}$
$\begin{array}{ll}\mathbf{A A} \alpha_{a} & \alpha_{a} . \\ \mathbf{A B} \alpha_{b} & \alpha_{b} . \\ \mathbf{A C} \alpha_{c} & \alpha_{c} .\end{array}$
AOPT aopt
$\alpha_{c}$.

See constitutive matrix for material 2.

Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes
determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.
Define for AOPT $=3$.
Define for AOPT $=3$.
Define for $\mathrm{AOPT}=3$.

Material Type 22 (Orthotropic Damage Model)

EA $E_{a}$
See constitutive matrix below.
EB $E_{b}$
$\mathrm{EC} E_{c}$
PRBA $v_{b a}$
PRCA $v_{c a}$
PRCB $v_{c b}$
GAB $G_{a b}$
GBC $G_{b c}$
GCA $G_{c a}$
$\mathbf{K} K_{f}$
$\mathbf{S C} S_{c}$
XT $x_{t}$
YT $y_{t}$
YC $y_{c}$
ALPH $\alpha$

Bulk modulus of failed material.
Shear strength, $a b$ plane.
Longitudinal tensile strength, $a$-axis.
Transverse tensile strength, $b$-axis.
Transverse compressive strength.
Non-linear shear stress parameter.

AOPT aopt
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
$=1.0$ : locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.
Define for AOPT $=2$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=2$.
Define for AOPT $=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

Material Type 23 (Thermal Orthotropic with Curves)

NPTS npts
Number of points. $(1<$ NPTS $<50)$.
EA $\left(E_{a}\right)_{1} \ldots\left(E_{a}\right)_{n}$
$\mathbf{E B}\left(E_{b}\right)_{1} \ldots\left(E_{b}\right)_{n}$
$\mathbf{E C}\left(E_{c}\right)_{1} \ldots\left(E_{c}\right)_{n}$
PRBA $\left(v_{b a}\right)_{1} \ldots\left(v_{b a}\right)_{n}$
PRCA $\left(v_{c a}\right)_{1} \ldots\left(v_{c a}\right)_{n}$
$\operatorname{PRCB}\left(\mathrm{v}_{c b}\right)_{1} \ldots\left(\mathrm{v}_{c b}\right)_{n}$
$\mathbf{A A}\left(\alpha_{a}\right)_{1} \ldots\left(\alpha_{a}\right)_{n}$
$\mathbf{A B}\left(\alpha_{b}\right)_{1} \ldots\left(\alpha_{b}\right)_{n}$
$\mathbf{A C}\left(\alpha_{c}\right)_{1} \ldots\left(\alpha_{c}\right)_{n}$
$\mathbf{G A B}\left(G_{a b}\right)_{1} \ldots\left(G_{a b}\right)_{n}$
$\operatorname{GBC}\left(G_{b c}\right)_{1} \ldots\left(G_{b c}\right)_{n}$
$\operatorname{GCA}\left(G_{c a}\right)_{1} \ldots\left(G_{c a}\right)_{n}$

## AOPT aopt

$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.

Define for $\mathrm{AOPT}=1$.
Define for $A O P T=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

## Material Type 24 (Elastic Plastic with Failure)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Additional Options:

SIGY $\mathrm{s}_{y}$
ETAN $E_{t}$
NPTS n

Yield strength.
Hardening modulus
Number of points in effective stress-effective plastic strain curve. Note that the first point on this curve must be $\mathrm{e}_{1}=0.0$ and $\mathrm{s}_{1}=$ yield stress.
Effective stress.
Effective plastic strain.
Minimum time step. (This is for automatic element deletion).
Failure strain
Load curve which describes strain-rate effects.

Strain rate is accounted for using the Cowper and Symonds model which scales the yield stress with the factor

$$
1+\left(\frac{\dot{\varepsilon}}{C}\right)^{y_{p}}
$$

where $\&$ is the strain rate. For complete generality a load curve may be input instead. This latter option is quite expensive.

A curve similar to that shown in Figure 3.4 is expected. A load curve may be used with an arbitrary number of points if eight is not sufficient. The cost is roughly the same for either approach.

## Material Type 25 (Inviscid Two Invariant Geologic Cap Model)

G $G$	Shear Modulus.	
K $K$	Bulk Modulus.	
ALPHA $\alpha$	$\alpha$.	
BETA $\beta$	$\beta$.	
GAMMA $\gamma$	$\gamma$.	
THETA $\theta$	$\theta$.	
R $R$	$R$.	
D $D$	$D$.	
X0 $X_{0}$	$X_{0}$.	
CC $C$	$C$.	
T $T$	Tension cutoff.	
NPLOT nplot	Save the following variable for plotting in	
	TAURUS:	
	$=1: \mathrm{k}$	
	$=2: X$	

$$
\begin{aligned}
& \text { =3: } \mathrm{e}_{v}^{p} \\
& =.4: J_{1} \\
& =5:\left(J_{2}\right)^{1 / 2} \\
& =6:\left(\left.J 2\right|_{L}\right)^{1 / 2} \\
& =7:\left(\left.J 2\right|_{t r}\right)^{1 / 2} \\
& \text { =8: MTYPE } \\
& \text { =9: number of iterations } \\
& \text { Variable ltype. } \\
& \text { =1: soil/concrete (cap contracts) } \\
& \text { =2: rock (cap doesn't contract) }
\end{aligned}
$$

LTYPE ltype

For details of this model, please refer to the LS-DYNA3D User's Manual.

## Material Type 26 (Metallic Honeycomb)

Model 26 provides a method for modeling the crushing of an anisotropic material which eventually compresses to a solid, isotropic mass. This model is valid for brick elements only. For more details, see the LS-DYNA3D manual.

E E	Young's modulus for fully compressed state.
PR $V$	Poisson's ratio for fully compressed state.
SIGY $\sigma_{y}$	Yield stress for fully compressed state.
VF $V_{f}$	Relative volume at which the material is fully compacted.
LCA $l c a$	Load curve for sigma-aa versus either relative volume or volumetric strain.
LCB $l c b$	Load curve for sigma- $b b$ versus either relative volume or volumetric strain.
LCC lcc	Load curve for sigma- $c c$ versus either relative volume or volumetric strain.
LCS lcs	Load curve for shear stress versus either relative volume or volumetric strain.
EAAU $E_{a a u}$	Elastic modulus $E_{\text {aau }}$ in uncompressed configuration.
EBBU $E_{b b u}$	Elastic modulus $E_{b b u}$ in uncompressed configuration.
$\mathbf{E C C U} E_{c c u}$	Elastic modulus $E_{c c u}$ in uncompressed configuration.
GABU $G_{a b u}$	Elastic shear modulus $G_{a b u}$ in uncompressed configuration.
GBCU $G_{b c u}$	Elastic shear modulus $G_{b c u}$ in uncompressed configuration.
GCAU $G_{\text {cau }}$	Elastic shear modulus $G_{c a u}$ in uncompressed configuration.
LCAB $l$ cab	Load curve number for $\mathrm{s}_{a b}$ versus either relative

LCBC $l c b c$

LCCA lcca

## AOPT aopt

$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$

Load curve number for $\mathrm{s}_{b c}$ versus either relative volume or volumetric strain. (default: $l c b c=l c s$ ) Load curve number for $\mathrm{s}_{c a}$ versus either relative volume or volumetric strain. (default: lcca=lcs)

Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes by determined element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.

## Material Type 27 (Compressible Mooney-Rivlin Rubber)

This material model provides an alternative to the Blatz-Ko rubber model. The implementation is due to Maker [12].
A $A$
Constant A.
B $B$
Constant B.
PR $V$
Poisson's ratio.

The strain energy density function is defined as:

$$
W=A(\mathrm{I}-3)+B(\mathrm{II}-3)+C(\mathrm{III}-2-1)+D(\mathrm{III}-1)^{2}
$$

where
$C=0.5 A+B$.
$D=\frac{A(5 v-2)+B(11 v-5)}{2(1-2 v)}$
$v=$ Poisson's ratio.
$2(A+B)=G=$ shear modulus of linear elasticity.
I, II, III are invariants of the right Cauchy-Green Tensor $\underset{\sim}{C}$.

## Material Type 28 (Resultant Plasticity)

Default heading: Material Type \#28 (Resultant Plasticity)

This model is available for the Belytschko-Schwer beam and the Belytschko-Tsay shell and is still under development. For beams the treatment is elastic-perfectly plastic, but for shell elements isotropic hardening is approximately modeled.

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Additional Options:
SIGY $\sigma_{y}$
ET $E_{t}$


Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Yield strength.
Hardening modulus (shells only).

## Material Type 29 (Force Limited Resultant Formulation)

This model is valid for the Belytschko beam element only. Experimentally obtained force-deflection curves may be used to model buckling and plastic behavior. See the LSDYNA3D manual for more details.

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $V$

## Additional Options:

$\mathbf{R} R_{1} l c_{1} \ldots R_{n} l c_{n} ;$

LPS1 lps1

SFS1 sfs1

LPS2 $\operatorname{lps} 2$

SFS2 $\mathrm{s} f \mathrm{~s} 2$

LPT1 lpt 1

SFT1 sft1

LPT2 lpt 2

SFT2 sft2

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Applied moments for force deflection curves. $n £ 8$.

Load curve for plastic moment versus rotation at node 1 in $s$-direction.

Scale factor for plastic moment versus rotation curve at node 1 in $s$-direction.

Load curve for plastic moment versus rotation at node 2 in $s$-direction.

Scale factor for plastic moment versus rotation curve at node 2 in $s$-direction.

Load curve for plastic moment versus rotation at node 1 in $t$-direction.

Scale factor for plastic moment versus rotation curve at node 1 in $t$-direction.

Load curve for plastic moment versus rotation at node 2 in $t$-direction.

Scale factor for plastic moment versus rotation curve at node 2 in $t$-direction.

## Material Type 30 (Closed-Form Update Shell Plasticity)

Default heading: Material Type \#30 (Closed-Form Update Shell Plasticity)

Input any two of the following:

## BULK $K$

E $E$
G $G$
PR $v$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

## Additional Options:

SIGY $\sigma_{y}$
ET $E_{t}$

Yield strength.
Hardening modulus.

This model is available for the Belytschko-Schwer beam and the Belytschko-Tsay shell and is still under development. For beams, the treatment is elastic-perfectly plastic, but for shell elements, isotropic harening is approximately modeled.

## Material Type 31 (Frazer-Nash Rubber Model)

This model implements a hyperelastic constitutive law described in [13].

C001 C001
C010 C010
C020 C020
C100 C100
C101 C101
C110 C110
C200 C200
C210 C210
C300 C300
C400 C400

## LIMIT 1

Limit option
$=0.0$ : stop if strain limits are exceeded.
10.0: continue if strain limits are exceeded.

EMAX $\varepsilon_{\text {max }}$
Maximum strain limit.
EMIN $\varepsilon_{\text {min }}$
Minimum strain limit.

The strain energy function, $U$, is defined in terms of the input constants as:

$$
\begin{aligned}
U= & C_{100} I_{1}+C_{200} I_{1}^{2}+C_{300} I_{1}^{3}+C_{400} I_{1}^{4}+C_{010} I_{2}+ \\
& C_{020} I_{2}^{2}+C_{110} I_{1} I_{2}+C_{210} I_{1}^{2} I_{2}+C_{001} I_{3}+C_{101} I_{1} I_{3}
\end{aligned}
$$

The derivative of $U$ with respect to a component of strain gives the corresponding component of stress:

$$
S_{i j}=\frac{\partial U}{\partial E_{i j}}=2 \frac{\partial U}{\partial C_{i j}}
$$

where $S_{i j}, E_{i j}$, and $C_{i j}$ are the second Piola-Kirchhoff stress tensor, the Green-St. Venant strain tensor, and the right Cauchy-Green deformation tensor, respectively.

## Material Type 32 (Laminated Glass Model)

EG $E_{g}$	Young's modulus for glass.
PRG $v_{g}$	Poisson's ratio for glass.
SYG $\left(\sigma_{y}\right)_{g}$	Yield stress for glass.
ETG $\left(E_{t}\right)_{g}$	Hardening modulus for glass.
FSG $\left(\varepsilon_{f}\right)_{g}$	Failure strain.
EP $E_{p}$	Young's modulus for polymer.
$\operatorname{PRP} v_{p}$	Poisson's ratio for polymer.
$\operatorname{SYP}\left(\sigma_{y}\right)_{p}$	Yield stress for polymer.
ETP $\left(E_{t}\right)_{p}$	Hardening modulus for polymer.
$\operatorname{IOPT} f_{1} \ldots f_{n} ;$	Integration point options.
	$f_{i}=0:$ glass.
	$f_{i}=1:$ polymer.

Isotropic hardening is assumed. The material to which the glass is bonded is assumed to stretch plastically without failure. A user defined integration rule is required which specifies the thickness of the layers making up the glass. There must be the same number of parameters for the IOPT command as integration points.

## Material Type 34 (Fabric)

The fabric material is similar to the orthotropic composite model (22). It is designed to allow a fabric to be modeled as layers of orthotropic material. The principal characteristic of a fabric material is that it does not support compressive stresses. This is because it is usually modeled with elements that are at least an order-of-magnitude wider than the thickness of the material. This model is still somewhat experimental and model 22 is frequently substituted.

EA $E_{a}$
See constitutive matrix below.
EB $E_{b}$
$\mathrm{EC} E_{C}$
PRBA $v_{b a}$
PRCA $v_{c a}$
PRCB $v_{c b}$
GAB $G_{a b}$
GBC $G_{b c}$
GCA $G_{c a}$
CSF $c s f$
TSF $t s f$
EXP exp
CSEF $f$

Compressive modulus scale factor.
Tensile modulus scale factor.
Exponent.
Compressive stress elimination flag.
$=0$ : use the variable modulus method.
$=1$ : truncate stresses (recommended).

The material law that relates stresses to strains is defined as:

$$
\mathrm{C}=\mathrm{T}^{\top} \mathrm{C}_{\mathrm{L}} \mathrm{~T}
$$

where $\backslash \mathrm{o}\left(\mathrm{T}, \sim_{\sim}\right)$ is a transformation matrix, and $\mathrm{lo}\left(\mathrm{C}, \sim_{\sim}\right) \mathrm{L}$ is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, $\mathrm{a}, \mathrm{b}$, and c . The inverse of $\backslash \mathrm{o}\left(\mathrm{C},{ }_{\sim}\right) \mathrm{L}$ is defined as


Note that $\frac{\mathrm{V}_{\mathrm{ab}}}{\mathrm{E}_{\mathrm{a}}}=\frac{\mathrm{V}_{\mathrm{ba}}}{\mathrm{E}_{\mathrm{b}}}, \frac{\mathrm{V}_{\mathrm{ca}}}{\mathrm{E}_{\mathrm{c}}}=\frac{\mathrm{V}_{\mathrm{ac}}}{\mathrm{E}_{\mathrm{a}}}, \frac{\mathrm{V}_{\mathrm{cb}}}{\mathrm{E}_{\mathrm{c}}}=\frac{\mathrm{V}_{\mathrm{bc}}}{\mathrm{E}_{\mathrm{b}}}$.

AOPT aopt
$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
$=1.0$ : locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

## Material Type 35 (Kinematic/Isotropic Elastic-Plastic Green-Naghdi Rate)

Default heading: Material Type \#35 (Green-Naghdi Rate Plasticity)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $v$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Additional Options:

SIGY $\sigma_{y}$
ET $E_{t}$

Yield strength
Hardening modulus

BETA $\beta^{\prime}$
Hardening parameter, $0 \leq \beta^{\prime} \leq 1$
SC $c$
SP $p$

This model is available only for brick elements and is similar to model 3 but uses the Green-Naghdi Rate formulation rather than the Jaumann rate.

## Material Type \#37 (Transversely Anisotropic Elastic-Plastic)

Default heading: Material Type \#37 (Transversely Anisotropic Elastic-Plastic)

Input any two of the following:

BULK $K$	Bulk modulus.
E $E$	Young's modulus.
G $G$	Shear modulus.
PR $v$	Poisson's ratio.

Additional Options:

ET $E_{t}$	Hardening modulus
LCSS $l c$	Load curve number for stress-strain curve.
R $R$	Anisotropic hardening parameter, $R$.
SIGY $\sigma_{y}$	Yield strength

This model is only available for shell elements and is intended for modeling sheet metal forming processes. This is a degenerate form of Hill's model which assumes similar in-plane flow characteristics in all directions but different through-thickness effects. See the LS-DYNA3D manual for more details.

## Material Type 41-50 (User Defined Material Models)

NPTS npts
Number of material parameters.
PARAM parameter 1 ... parameter Material parameters.
AOPT aopt
Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.


YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Define for $\mathrm{AOPT}=1$.
Define for AOPT $=1$.
Define for $\mathrm{AOPT}=1$.
Define for AOPT $=2$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

## Material Type 51 (Temperature and Rate Dependent Plasticity)

Input any two of the following:

BULK $K$
E E
G $G$
PR $v$

Additional Options:

T $T$
HC HC
COEF $C_{1} \ldots C_{18}$
ALPHA $\alpha_{1} \alpha_{2} \alpha_{4} \alpha_{5} \alpha_{6}$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

KAPPA $\kappa$
$\kappa$.

See the LS-DYNA3D manual for a description of this model.

## Material Type 52 (Sandia's Damage Model)

Input any two of the following:

BULK $K$	Bulk modulus.
E $E$	Young's modulus.
G $G$	Shear modulus.
PR $v$	Poisson's ratio.

Additional Options:

T $T$	Initial Temperature.
HC $H C$	Heat generation coefficient.
COEF $C_{1} \ldots C_{18}$	Model Coefficients.
ALPHA $\alpha_{1} \alpha_{2} \alpha_{4} \alpha_{5} \alpha_{6}$	Initial value of internal state variables.
NEXP $n$	Exponent in damage evolution
D0 D0	Initial damage (porosity).

See the LS-DYNA3D manual for a description of this model.

## Material Type 53 (Low Density Closed Cell Polyurethane Foam)

Options:

E $E$	Young's modulus.
GAM0 $\gamma_{0}$	Initial volumetric strain.
P0 $p_{0}$	Initial foam pressure.
PA a	a.
PB b	b.
PC $c$	c.
PHI $\phi$	Ratio of foam to polymer density.

See the LS-DYNA3D manual for a description of this model.

## Material Type 54 and 55 (Composite Damage Model)

Material 54 uses the Chang matrix failure criterion (the same as model 22). Material 55 uses the Tsay-Wu criterion. These models are for LS-920 and later.

EA $E_{a}$	See constitutive matrix below.
EB $E_{b}$	
EC $E_{c}$	
PRBA $v_{b a}$	
PRCA $v_{c a}$	
PRCB $v_{c b}$	
GAB $G_{a b}$	
GBC $G_{b c}$	
GCA $G_{c a}$	Softening for fiber tensile strength
FBRT fbrt	>0.0: fiber rupture with tension cutoff.
	Softening reduction factor for material strength
	in crashfront elements (default=1.0)
SOFT soft	Bulk modulus of failed material.
	Shear strength, ab plane.
K $K_{f}$	Longitudinal tensile strength, $a$-axis.
SC $S_{c}$	Transverse tensile strength, $b$-axis.
XT $x_{t}$	Transverse compressive strength.
YT $y_{t}$	Non-linear shear stress parameter.
YC $y_{c}$	Time step for automatic element deletion.
ALPH $\alpha$	

AOPT aopt
Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $A O P T=1$.
Define for $\mathrm{AOPT}=2$.
Define for AOPT $=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

## Material Type 57 (Low Density Urethane Foam)

This model is for LS-920 and later.

## Options:

BETA $\beta$	Decay constant.
E $E$	Young's modulus.
LC $l$	Load curve number of nominal stress versus   strain.
TENSION $t$	Tension cut-off stress.
UNLOAD $d$	Hysteretic unloading factor between 0 and 1   (Default=1, i.e. no energy dissipation).

See the LS-DYNA3D manual for a description of this model.

Material Type 59 (Composite Failure Model - Plasticity Based)

This model is for LS-920 and later.
EA $E_{a}$
See constitutive matrix below.
EB $E_{b}$
$\mathrm{EC} E_{c}$
PRBA $v_{b a}$
PRCA $v_{c a}$
PRCB $v_{c b}$
GAB $G_{a b}$

GBC $G_{b c}$
GCA $G_{c a}$
FBRT fbrt

SOFT soft
SF $s f$
SR $s r$
$\mathbf{K} K_{f}$
$\mathbf{S C} S_{c}$
XT $x_{t}$
YT $y_{t}$
YC $y_{c}$
ALPH $\alpha$
TFAIL $t_{f}$
Softening for fiber tensile strength $=0.0$ : fiber rupture with tension cutoff.
$>0.0$ : stress=fbrt, $X_{c}$ after failure.
Softening reduction factor for material strength in crashfront elements (default=1.0)
Softening factor. (default $=0.0$ ).
Reduction factor. (default=0.447).
Bulk modulus of failed material.
Shear strength, $a b$ plane.
Longitudinal tensile strength, $a$-axis.
Transverse tensile strength, $b$-axis.
Transverse compressive strength.
Non-linear shear stress parameter.
Time step for automatic element deletion.

## AOPT aopt

Material axes option (Figure 20-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 20-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

## Material Type 60 (Elastic with Viscosity)

This model is for LS-910 and later.

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $V$

Additional Options:
NPTS npts
$\mathbf{T} T_{1} \ldots T_{n}$
$\mathbf{V C} v_{1} \ldots v_{n}$

## Material Type 64 (Simple Creep Model)

This model is for LS-930 and later.

Input any two of the following:

BULK $K$
E $E$
G $G$
PR

Additional Options:
EI $e i$
K $k$
LCK $1 c k$
LCM lcm
M $m$
$\mathbf{N} n$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Number of points. (npts£8). (Default=1).
Temperatures. (input only if npts>1.)
Viscosity coefficients (at least one is input.)

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Value for $e i$.
Value for $k$.
Load curve for $k$.
Load curve for $m$.
Value for $m$.
Value for $n$.

## Material Type Belt

This is a special material which applies to beam elements only. When material type belt is specified, beams are converted to the special seat belt element in LS-920 and later. Dummy beam elements are output to LS-DYNA3D also for viewing as null materials.

LCL $1 c l$
$\mathbf{L C U} l c u$
RO r
MINIMUM $l$

Load curve for loading.
Load curve for unloading.
Mass per unit length.
Minimum allowable length. (This is used to determine the minimum element size before an element is passed through a slip ring.)

## Example:

MAT 56 TYPE BELT LCL 24 LCU 24 RO [0.100/386.4]
MINIMUM 0.2 BEAM ENDMAT

## 21. Equations-of-State

Equations-of-state are required by certain LS-DYNA2D and LS-DYNA3D material models. They provide a relationship between pressure, relative volume, and temperature (or internal energy) which is used in place of a bulk modulus. Equations-of-state are needed when significant volume changes occur during a deformation process. They are attached to a material model and the general form of the input is:

MAT $i$ TYPE $j$ \{material options $\}$ ENDMAT
EOS $k$ \{equation-of-state options $\}$ ENDEOS
This will define material $i$ as being of type $j$ and having equation-of-state characteristics of type k.

## Equation-of-State Form 1 (Linear Polynomial)

Default heading: Equation-of-State Form 1 (Linear Polynomial)

CO $C_{0}$	See equation below
C1 $C_{1}$	
C2 $C_{2}$	
C3 $C_{3}$	
C4 $C_{4}$	
C5 $C_{5}$	
C6 $C_{6}$	Initial internal energy
E0 $E_{0}$	Initial relative volume
V0 $V_{0}$	End equation-of-state definition.
ENDEOS	

The linear polynomial equation-of-state is linear in internal energy. The pressure is given by:

$$
P=C_{0}+C_{1} \mu+C_{2} \mu^{2}+C_{3} \mu^{3}+\left(C_{4}+C_{5} \mu+C_{6} \mu^{2 `}, E .\right.
$$

where terms $C_{2} \mu^{2}$ and $C_{6} \mu^{2}$ are set to zero if $\mu<0, \mu=\rho / \rho_{0}-1$ and $\rho / \rho_{0}$, is the ratio of current density to the initial density.

## Equation-of-State Form 2 (JWL)

Default heading: Equation-of-State Form 2 (JWL High Explosive)

A A See equation below.
B $B$
R1 $R_{1}$
R2 $R_{2}$
OMEGA $\omega$
E0 $E_{0} \quad$ Initial internal energy
V0 $V_{0}$
ENDEOS
Initial relative volume

End equation-of-state definition.

The JWL equation-of-state defines the pressure as

$$
p=A\left(1-\frac{\omega}{R_{1} V}\right) e^{-R_{1} V}+B\left(1-\frac{\omega}{R_{2} V}\right) e^{-R_{2} V}+\frac{\omega E}{V}
$$

and is usually used for detonation products of high explosives.

## Equation-of-State Form 3 (Sack)

Default heading: Equation-of-State Form 3 (Sack Tuesday High Explosive)

A1 $A_{1}$
See equation below
A2 $A_{2}$
A3 $A_{3}$
B1 $B_{1}$
B2 $B_{2}$
E0 $E_{0}$
Initial internal energy
V0 $V_{0}$
Initial relative volume
ENDEOS
End equation-of-state definition.

The Sack equation-of-state defines the pressure as

$$
p=\frac{A_{3}}{V_{1}^{A}} e^{-A_{2} V}\left(1-\frac{B_{1}}{V}\right)+\frac{B_{2}}{V} E
$$

and is used for detonation products of high explosives.

## Equation-of-State Form 4 (Gruneisen)

Default heading: Equation-of-State Form 4 (Gruneisen)

SP $C$	See equation below.
S1 $S_{1}$	
S2 $S_{2}$	
S3 $S_{3}$	
GAMMA g $g_{0}$	
SA $a$	Initial internal energy.
E0 $E_{0}$	Initial relative volume.
V0 $V_{0}$	End equation-of-state definition.

The Gruneisen equation-of-state with cubic shock velocity-particle velocity defines pressure for compressed materials as

$$
p=\frac{\rho_{0} C^{2} \mu\left[1+\left(1-\frac{\gamma_{0}}{2}\right) \mu-\frac{a}{2} \mu^{2}\right]}{\left[1-\left(S_{1}-1\right) \mu-S_{2} \frac{\mu^{2}}{\mu+1} S_{3} \frac{\mu^{3}}{(\mu+1)}\right]^{2}}+\left(\gamma_{0}+a \mu\right) E .
$$

and for expanded materials as

$$
p=\rho_{0} C^{2} \mu+\left(\gamma_{0}+a \mu\right) E
$$

where $C$ is the intercept of the $u_{s}-u_{p}$ curve, $S_{1}, S_{2}$, and $S_{3}$ are the coefficients of the slope of the $u_{s}-u_{p}$ curve, $\gamma_{0}$ is the Gruneisen gamma; and a is the first order volume correction to $\gamma_{0}$ and $\mu=\frac{\rho}{\rho_{0}}-1$.

## Equation-of-State Form 5 (Ratio of Polynomials)

Default heading: Equation-of-State Form 5 (Ratio of Polynomials)
$\mathrm{A} 10 A_{10}$
A11 $A_{11}$
$\mathrm{A} 12 A_{12}$
A13 $A_{13}$
A20 $A_{20}$
A21 $A_{21}$
$\mathbf{A 2 2} A_{22}$
A23 $A_{23}$
A30 $A_{30}$
A31 $A_{31}$
A32 $A_{32}$
A33 $A_{33}$
A40 $A_{40}$
A41 $A_{41}$
A42 $A_{42}$
A43 $A_{43}$
A50 $A_{50}$
A51 $A_{51}$
A52 $A_{52}$
A53 $A_{53}$
A60 $A_{60}$
A61 $A_{61}$
A62 $A_{62}$
A63 $A_{63}$
A70 $A_{70}$
A71 $A_{71}$
A72 $A_{72}$
A73 $A_{73}$
ALPHA a
BETA b
A14 $A_{14}$
A24 $A_{24}$
COEF A10..A24
E0 $E_{0}$
V0 $V_{0}$
ENDEOS
List the 32 above coefficients in the same order as they appear.
Initial internal energy
Initial relative volume
End equation-of-state definition.

The ratio of polynomials equation-of-state defines the pressure as

$$
p=\frac{F_{1}+F_{2} E+F_{3} E^{2}+F_{4} E^{3}}{F_{5}+F_{6} E+F_{7} E^{2}}(1+\alpha \mu)
$$

where

$$
\begin{array}{ll}
F_{i}=\sum_{j=0}^{n} A_{i j} \mu^{j} & \mathrm{n}=4 \text { if } i<3 \\
\mu=\frac{\rho}{\rho_{0}}-1 & \mathrm{n}=3 \text { if } i \cdot 3
\end{array}
$$

In expanded zones $F_{1}$ is replaced by $\mathrm{F}^{\prime} 1=\mathrm{F}_{1}+\beta \mu^{2}$. By setting coefficient $\mathrm{A}_{10}=1.0$, the delta-phase pressure modeling for this material will be initiated. The code will reset it to 0.0 after setting flags.

## Equation-of-State Form 6 (Linear Polynomial With Energy Leak)

Default heading: Equation-of-State Form 6 (Linear Polynomial with Energy Leak)

C1 $C_{1}$	See Equation-of-State Form 1.
C2 $C_{2}$	
C3 $C_{3}$	
C4 $C_{4}$	
C5 $C_{5}$	Initial internal energy.
C6 $C_{6}$	Initial relative volume.
E0 $E_{0}$	Curve number of time history that gives energy   deposition rate.
V0 $V_{0}$	End equation-of-state definition.
CN $c n$	

## Equation-of-State Form 7 (Ignition and Growth of Reaction in HE)

Default heading: Equation-of-State Form 7 (Ignition and Growth of Reaction in High Explosive)

$\mathbf{A P} A_{p}$	See equations below
BP $B_{p}$	See equations below
$\mathbf{R 1 P} R_{1 p}$	See equations below
R2P $R_{2 p}$	See equations below
G $G$	Second ignition coefficient
$\mathbf{W P C P} \mathrm{w}_{p} C_{p}$	See equations below
$\mathbf{A E} A_{e}$	See equations below
BE $B_{e}$	See equations below
WECE $\mathrm{w}_{e} C_{e}$	See equations below
R1E $R_{1 e}$	See equations below
R2E $R_{2 e}$	See equations below
FCRIT FCRIT	Critical fraction reached
I I	First ignition coefficient
H H	Growth coefficient
$\mathbf{Z} z$	Pressure exponent
X $x$	See equations below
Y Y	See equations below
$\mathrm{CP} C_{p}$	Heat capacity of reaction products
CE $C_{e}$	Heat capacity of unreacted HE
M $m$	(generally $=0$ )
T0 $T_{0}$	Initial temperature ( ${ }^{\circ} \mathrm{K}$ )
E0 $E_{0}$	Initial internal energy
ENDEOS	End equation-of-state definition.

A JWL equation-of-state defines the pressure in the unreacted HE as

$$
\mathrm{P}_{\mathrm{e}}=\mathrm{A}_{\mathrm{e}}\left(1-\frac{\omega_{\mathrm{e}}}{\mathrm{Rl}_{\mathrm{e}} \mathrm{~V}_{\mathrm{e}}}\right) \mathrm{e}^{-\mathrm{Rl}_{\mathrm{e}} \mathrm{~V}_{\mathrm{e}}}+\mathrm{B}_{\mathrm{e}}\left(1-\frac{\omega_{\mathrm{e}}}{\mathrm{R} 2_{\mathrm{e}} \mathrm{~V}_{\mathrm{e}}}\right) \mathrm{e}^{-\mathrm{R} 2 \mathrm{e}_{\mathrm{e}}}+\frac{\omega \mathrm{E}_{\mathrm{e}}}{\mathrm{~V}_{\mathrm{e}}}
$$

where $V_{e}$ is the relative volume, $E_{e}$ is the internal energy, and the constants $A_{e}, B_{e}, \mathrm{w}_{e}, R_{1 e}$, and $R_{2 e}$ are input constants. Similarly the pressure in the reaction products is defined by another JWL form

$$
P_{p}=A_{p}\left(1-\frac{\omega_{p}}{R 1_{p} V_{p}}\right) e^{-R 1_{p} V_{p}}+B_{e}\left(1-\frac{\omega_{p}}{R 2_{p} V_{p}}\right) e^{-R 2_{p} V_{p}}+\frac{\omega E_{p}}{V_{p}}
$$

The mixture of unreacted explosive and reaction products is defined by the fraction reacted $\mathrm{F}(\mathrm{F}=0)$ " no reaction, $(\mathrm{F}=1)$ " complete conversion from explosive to products. The pressures and temperatures are assumed to be in equilibrium and the volumes are assumed to be additive.

$$
V=(1-F) V_{e}+F V_{p}
$$

The rate of reaction is

$$
\begin{array}{r}
\frac{\partial F}{\partial t}=I(\text { FCRIT }-F)^{y}\left(V_{e}^{-1}-1\right)^{3}\left[1+G\left(V_{e}^{-1}-1\right)\right]+ \\
H(1-F)^{y} F^{x_{P}}{ }^{z}\left(V_{p}^{-1}-1, m\right.
\end{array}
$$

where $I, G, H, x, y, z$, and $m$ (generally $m=0$ ) are input constants.
The JWL equations of state and the reaction rates have been fitted to one- and twodimensional shock initiation and detonation data for four explosives: PBX-9404, RX-03-BB, PETN, and cast TNT. The details of the calculational method are described by Cochran and Chan [14]. The detailed one-dimensional calculations and parameters for the four explosives are given by Lee and Tarver [15].

## Equation-of-State Form 8 ( Tabulated-Compaction)

Default heading: Equation-of-State Form 8(Tabulated-Compaction)
NPTS $n$
LNV $\mathrm{e}_{1} \mathrm{e}_{V_{2}} \mathrm{e}_{V_{n}}$
PC $C_{1} C_{2} \ldots C_{n}$
PT $T_{1} T_{2} \ldots T_{n}$
KU $K_{1} K_{2} \ldots K_{n}$
GAMMA $\gamma$
E0 $E_{0}$
V0 $V_{0}$
ENDEOS

> Number of points in tabulated curves.
> Volumetric strain points, $\mathrm{e}_{i}=\ln \left(V_{i}\right)$.
> Points on the curve for $C\left(\mathrm{e}_{V}\right)$.
> Points on the curve for $T\left(\mathrm{e}_{V}\right)$.
> Points on the curve for the unloading bulk modulus.
> See equation below.
> Initial internal energy.
> Initial relative volume.
> End equation-of-state definition.

The tabulated compaction model is linear in internal energy. Pressure is defined by

$$
p=C\left(\varepsilon_{V}\right)+\gamma \Gamma\left(\varepsilon_{V}\right) E
$$

in the loading phase. The volumetric strain $\mathrm{e}_{V}$, is given by the natural logarithm of the relative volume. Unloading occurs along the unloading bulk modulus to the pressure cutoff. Reloading always follows the unloading path to the point where unloading began, and continues on the loading path. See Figure 21-1. Up to 10 points and as few as 2 may be used when defining the tabulated function, LS-DYNA2D/3D will extrapolate to find the pressure
if necessary.


Figure 21-1. Pressure versues volumetric strain curve for equation-of-state form 8 with compaction. In the compacted states the bulk unloading modulus depend on the peak volumetric strain.

## Equation-of-State Form 9 (Tabulated)

Default heading: Equation-of-State Form 9 (Tabulated)

NPTS $n$
$\mathbf{L N V} \mathrm{e}_{V_{1}} \mathrm{e}_{V_{2}} \mathrm{e}_{V_{n}}$
PC $C_{1} C_{2} \ldots C_{n}$
PT $T_{1} T_{2} \ldots T_{n}$
GAMMA g

Number of points in tabulated curves.
Volumetric strain points, $\mathrm{e}_{i}=\ln \left(V_{i}\right)$.
Points on the curve for $C\left(\mathrm{e}_{V}\right)$.
Points on the curve for $T\left(\mathrm{e}_{V}\right)$.
See equation below.

E0 $E_{0}$
V0 $V_{0}$
ENDEOS

Initial internal energy.
Initial relative volume.
End equation-of-state definition.

The tabulated compaction model is linear in internal energy. Pressure is defined by

$$
\mathrm{P}=\mathrm{C}\left(\varepsilon_{\mathrm{V}}\right)+\gamma \mathrm{T}\left(\varepsilon_{\mathrm{V}}\right) \mathrm{E}
$$

in the loading phase. The volumetric strain $\mathrm{e}_{V}$, is given by the natural logarithm of the relative volume. Unloading occurs along the unloading bulk modulus to the pressure cutoff. Reloading always follows the unloading path to the point where unloading began, and continues on the loading path. See Figure 21-1. Up to 10 points and as few as 2 may be used when defining the tabulated function, LS-DYNA2D/3D will extrapolate to find the pressure if necessary.

## 22. LS-NIKE2D Commands and Materials

Analysis options are code dependent. They can be set either in the control section of the LS-INGRID input file or in the graphics phase. These commands become active when LS-NIKE2D output is selected with the NK2D command.

ANAL	$n$	Analysis type   ="STAT": static analysis (default).   ="DYN": direct time integration.   ="DYNS": direct time integration with static initialization.   ="EIGE": eigenvalue extraction.
BWMO	$n$	Bandwidth minimization option.   ="ON": perform minimization in analysis code (default).   ="OFF": don't minimize bandwidth.
DCTOL	tol	Convergence tolerance on displacements. LSNIKE2D defaults to 0.001 .
DELT	D $t$	Time step size for LS-NIKE2D.
DTMAX	D	Maximum step size permitted. If $\mathrm{SSO}=$ "AUTO" the default is set by LS-NIKE2D.
DTMN	$d$	Minimum step size permitted. If $\mathrm{SSO}=$ "AUTO" the default is set by LS-NIKE2D.
ECTOL	tol	Convergence tolerance on energy. LS-NIKE2D defaults to 0.01 .
GEOM	$s n$	Node and element data dump interval for high speed printer.   "PLAN" Plane strain   "STRE" Plane stress   "AXIS" Axisymmetric
GRAV	$g_{x} g_{y} g_{z}$	Gravity acceleration vector. The gravitational field is scaled in time by load curve one.
GSTIF	on/off	Geometric stiffness option. The default is off and generally gives the best results.
IPLT	$n$	Node and element data dump interval for TAURUS post-processing.
LST	tol	Line search tolerance.


MSRF	$n$	Maximum number of stiffness reformations per time step. LS-NIKE2D defaults to the recommended value of 15 .
NBEI	$n$	The number of time steps between equilibrium iterations.
NBSR	$n$	The number of time steps between stiffness matrix reformation.
NEIG	$n$	Number of eigenvectors. This option turns on the subspace iteration eigenvalue/eigenvector solution method and overrides all other solution options. Eigenvectors are mass normalized and written into the graphics database. The time word corresponds to the frequency in radians/units of time.
NIBSR	$n$	Maximum number of equilibrium iterations permitted between stiffness matrix reformations. LS-NIKE2D defaults to the recommended value of 10 .
NIP1	$s$	First Newmark integration parameter.
NIP2	$s$	Second Newmark integration parameter.
NSMD	$n$	$\begin{aligned} & \text { Nonlinear solution method. } \\ & \text { ="BFGS": BFGS (default) } \\ & \text { ="BROY": Broyden's } \\ & \text { ="MODN": modified Newton } \end{aligned}$
		To obtain a linear elastic solution, NBSR and NBEI should be larger than the number of time steps in the problem.
		The default parameters for nonlinear solution methods are near optimal. If a problem is having trouble converging the fixes include decreasing the time step, adding dynamic effects, or trying to eliminate some of the nonlinearities.
NSTEP	$n$	Number of desired time steps.
RFTS	$r$	Reduction factor for tangential stiffness. This is used for modeling the stick condition due to friction in the penalty formulation of contact.
SBRF	$n$	Number of time steps between restart file generations. If zero, LS-NIKE2D writes a restart file as it terminates.
SHIFT	w	Shift frequency in hertz. This option works with

the eigenvalue/eigenvector solution method.
Using this option, LS-NIKE2D will find the
NEIG eigenvalues nearest to $w$. If the model has rigid body modes, a negative value for w should be used to make the run stable. If w is exactly the same value as an eigenvalue the system becomes singular.

SSIT
SSO
$u$
$n$
TEO $i$

TERM

Slide surface insertion tolerance.
Step size option.
"AUTO"
"MANUAL"
Optimal number of iterations per step.
Thermal effects option
$=0$ : no thermal effects.
$=\mathrm{N}$ : nodal temperatures are defined in input and are scaled according to a time function. N is the load curve number.
$=-1$ : each time step a new temperature state is read from a disk file. The time word at the beginning of each temperature state is ignored.
$=-2$ : each time step a temperature state is interpolated from the temperature state in a disk file. Therefore the time words at the beginning of each temperature state are used.
$=-3$ : the disk file containing temperatures has only one state. The initial state is assumed to be zero.

Terminate dynamic time integration at time $t$. The dynamic time step size will be computed if this command is used instead of the "DELT" command.

### 22.1 LS-NIKE2D MATERIAL INPUT

LS-NIKE2D material input is possible after the NK2D command has been input (see Control Commands). The form of this input is: MAT $n$ TYPE $m$ \{options specific to material type m$\}$ \{general material options $\}$ ENDMAT. $n$ is a material name which is assigned a number in the order that they occur in the input. Therefore, the materials should be defined in order before any additional use of materials is made.

## Material Type 1 (Elastic)

Default heading: Material Type \#1 (Elastic)

Input any two of the following.

BULK $K$
E $E$
G $G$
PR $n$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Material Type 2 (Orthotropic Elastic)

EA $E_{a}$	See constitutive matrix below.
EB $E_{b}$	
$\mathrm{EC} E_{C}$	
PRBA $u_{b a}$	
PRCA $\mathrm{u}_{c a}$	
PRCB $\mathrm{u}_{c b}$	
GAB $G_{a b}$	
AOPT aopt	Material axes option (Figure 22-1).
	$=0.0$ : locally orthotropic with materials axes by $y$ value specified on each element card and element nodes $n_{1}$ and $n_{2}$, (see Figure 22-1).
	=1.0: locally orthotropic with materials axes by a point in space and global location of element center.
	=2.0: globally orthotropic with materials axes determined by $y_{G}$.
$\mathbf{R P} r_{p}$	Define for $\mathrm{AOPT}=1$.
$\mathbf{Z P} z_{p}$	Define for AOPT $=1$.
PSIG $\mathrm{y}_{G}$	Define for $\mathrm{AOPT}=2$.

The material law that relates stresses to strains is defined as:

$$
\underset{\sim}{\mathrm{C}}={\underset{\sim}{\mathrm{T}}}^{\top} \underset{\sim}{\mathrm{C}} \mathrm{C}_{\sim}^{\top} \text {, }
$$

Where $\mathrm{lo}\left(\mathrm{T}\right.$, , is a transformation matrix, and $\operatorname{lo}(\mathrm{C},)_{\mathrm{L}}$ is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, $a, b$, and $c$. The inverse of $10(\mathrm{C},)_{\mathrm{L}}$ is defined as

$$
\underset{\sim L}{\mathrm{C}^{-1}}=\left[\begin{array}{cccccc}
\frac{1}{\mathrm{E}_{a}} & -\frac{\mathrm{v}_{\mathrm{ba}}}{\mathrm{E}_{\mathrm{b}}} & -\frac{\mathrm{v}_{\mathrm{ca}}}{\mathrm{E}_{\mathrm{c}}} & 0 & 0 & 0 \\
-\frac{\mathrm{v}_{\mathrm{ab}}}{\mathrm{E}_{\mathrm{a}}} & \frac{1}{\mathrm{E}_{\mathrm{b}}} & -\frac{\mathrm{v}_{\mathrm{cb}}}{\mathrm{E}_{\mathrm{c}}} & 0 & 0 & 0 \\
-\frac{\mathrm{vac}_{a c}}{\mathrm{E}_{\mathrm{a}}} & -\frac{\mathrm{v}_{\mathrm{bc}}}{\mathrm{E}_{\mathrm{b}}} & \frac{1}{\mathrm{E}_{\mathrm{c}}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\mathrm{G}_{\mathrm{ab}}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\mathrm{G}_{\mathrm{bc}}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\mathrm{G}_{\mathrm{ca}}}
\end{array}\right]
$$

Note that $\frac{v_{a b}}{E_{a}}=\frac{v_{b a}}{E_{b}}, \frac{v_{c a}}{E_{c}}=\frac{v_{a c}}{E_{a}}, \frac{v_{c b}}{E_{c}}=\frac{v_{b c}}{E_{b}}$.

(c)

AOPT=0.0 default

AOPT=2.0 define $\mathbf{a}$ and $\mathbf{d}$


AOPT=3.0

Figure 22-1. Options for determining principal materials axes: (a) AOPT $=0.0$, (b) AOPT $=1.0$, and (c) $\mathrm{AOPT}=2.0$.

## Material Type 3 (Kinematic/Isotropic Elastic/Plastic)

Default heading: Material Type \#3 (Elastic-Plastic)

Input any two of the following:

## BULK $K$

E $E$
G $G$
PR $n$

Additional Options
SIGY $\mathrm{s}_{y}$
ETAN $E_{t}$
BETA b'
NPTS $n$

ES $\mathrm{s}_{y 1} \mathrm{~s}_{y 2} \ldots \mathrm{~s}_{y n}$
$\boldsymbol{E P S} \mathrm{e}_{p 1} \mathrm{e}_{p 2} \cdots \mathrm{e}_{p n}$

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Yield strength.
Hardening modulus.
Hardening parameter, $0 \leq \mathrm{b}^{\prime} \leq 1$
Number of points on stress-effective plastic strain curve.

Effective stress.
Effective plastic strain.

Isotropic, kinematic, or a combination of isotropic and kinematic hardening may be specified by varying b' between 0 and 1 . For b' equal to 0 and 1 , respectively, kinematic and isotropic hardening are obtained as shown in Figure 22-2. Effective stress is defined in terms of the deviatoric stress tensor, $s_{i j}$ as:

$$
\bar{\sigma}=\left(\frac{3}{2} S_{i j} S_{i j}\right)^{1 / 2}
$$

where,

$$
S_{i j}=\sigma_{i j}-\frac{1}{3} \sigma_{k k} \delta_{i j}
$$

and effective plastic strain by:

$$
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}} \mathrm{~d} \bar{\varepsilon}^{\mathrm{p}}
$$

where $t$ denotes time and

$$
d \bar{\varepsilon}^{p}=\left(\frac{2}{3} d \varepsilon_{i j}^{p} d \varepsilon_{i j}^{p}\right)^{1 / 2}
$$



Figure 22-2. Elastic-plastic behavior with isotropic and kinematic hardening where $l_{0}$ and $l$ are undeformed and deformed length of uniaxial tensions specimen.

## Material Type 4 (Thermo-Elastic-Plastic)

Default heading: Material Type 4 (Thermo-Elastic-Plastic)

NPTS $n$
TEMP $T_{1} T_{2} \ldots T_{n}$
$\mathbf{E} E_{1} E_{2} \ldots E_{n}$
$\mathbf{P R} \mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{n}$
ALPHA $\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{n}$
SIGY $\sigma_{y 1} \sigma_{y 2} \ldots \sigma_{y n}$
ETAN $E_{t 1} E_{t 2} \ldots E_{t n}$

Number of temperature values for which material constants are defined.
Temperatures.
Young's moduli.
Poisson's ratios.
Coefficients of thermal expansion.
Yield stresses.
Tangent moduli.

## Material Type 5 (Soil and Crushable Foam)

Default heading: Material Type 5 (Soil and Crushable Foam)

Input any two of the following:
BULK $K$
E $E$
G $G$
PR $v$

Additional Options:

AO $n$
A1 $a_{1}$
A2 $a_{2}$
$\mathrm{PC} P_{c}$
UL uopt

## NPTS $n$

VS $\mathrm{e}_{v 1} \mathrm{e}_{v 2} \ldots \mathrm{e}_{v n}$
$\mathbf{P} p_{1} p_{2} \ldots p_{n}$

> to

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Yield function constant
Yield function constant
Yield function constant
Pressure cutoff for tensile fracture
Unloading option
$=0$ : volumetric crushing
$=1$ : no volumetric crushing
Number of points in volumetric strain versus pressure curve ( $n £ 10$ ).
Volumetric strain values
Pressures corresponding to volumetric strain values

The deviatoric yield function, $\phi$, is described in terms of the second invariant $J_{2}$.

$$
J_{2}=\frac{1}{2} \mathrm{~s}_{\mathrm{j}} \mathrm{~s}_{\mathrm{ij}}
$$

Pressure, $p$, and constants $a_{0}, a_{1}$, and $a_{2}$ as:

$$
\phi=J_{2}-\left[a_{0}+a_{1} p+a_{2} p^{2}\right] .
$$

On the yield surface, $J_{2}=1 / 3\left(\mathrm{~s}_{y}\right)^{1 / 2}$, where $\sigma_{y}$ is the yield stress, i.e.,

$$
\left.\sigma_{y}=\mid 3\left(a_{0}+a_{1} p+a_{2} p^{2}\right)\right]^{1 / 2}
$$

For elastic-perfectly plastic behavior $a_{1}=a_{2}=0$, and $\left(3 a_{0}\right)^{1 / 2}$ defines the yield strength. The volumetric strain is given by the natural logarithm of the relative volume $V$. If the pressure drops below the cutoff value, PC , then it is reset to that value.


Figure 22-3. Volumetric strain versus pressure curve for soil and crushable foam model.

## Material Type 6 (Viscoelastic)

G $G_{0}$	Short term shear modulus.
GI $G^{,}$	Long term shear modulus.
K $K$	Bulk modulus.
BETA b	Decay constant.

The shear relaxation behavior is described by:

$$
\mathrm{G}(\mathrm{t})=\mathrm{G}+\left(\mathrm{G}_{0}-\mathrm{G}\right) \mathrm{e}^{-\beta \mathrm{t}}
$$

A Jaumann rate formulation is used:

$$
\stackrel{\nabla}{\sigma_{\mathrm{ij}}^{\prime}}=2 \int_{0}^{\mathrm{t}} \mathrm{G}(\mathrm{t}-\tau) \mathrm{D}_{\mathrm{ij}}^{\prime}(\tau) \mathrm{dt}
$$

where the prime denotes the deviatoric part of the stress rate, $\stackrel{\nabla}{\sigma}_{i j}$, and the strain rate $D_{I J}$.

Material Type 7 (Thermal Orthotropic Elastic)

Default heading: Material Type \#7 (Thermal Orthotropic Elastic)

EA $E_{a}$
See constitutive matrix below.
EB $E_{b}$
$\mathrm{EC} E_{c}$
PRBA $u_{b a}$
PRCA $\mathrm{u}_{c a}$
PRCB $\mathbf{u}_{c b}$

ALPA $\mathrm{a}_{a}$
ALPB $a_{b}$
ALPC $\mathrm{a}_{c}$
GAB $G_{a b}$
AOPT aopt

Thermal expansion coefficient along axis a.
Thermal expansion coefficient along axis $b$.
Thermal expansion coefficient along axis c .

Material axes option (Figure 22-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 22-1).
$=1.0$ : locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by yg.
$\mathbf{R P} r_{p}$
Define for $\mathrm{AOPT}=1$.
$\mathbf{Z P} z_{p}$
PSIG yG
Define for $\mathrm{AOPT}=1$.
In radians, define for $\mathrm{AOPT}=2$.

## Material Type 8 (Thermo-Elastic-Creep)

Default heading: Material Type \#8 (Thermo-Elastic-Creep)

NPTS $n$	Number of temperature values for which   material constants are defined.
TEMP $T_{1} T_{2} \ldots T_{n}$	Temperatures
G $G_{1} G_{2} \ldots G_{n}$	Shear moduli.
K $K_{1} K_{2} \ldots K_{n}$	Bulk moduli.
ALPHA a $a_{1} a_{2} \ldots a_{n}$	Coefficients of thermal expansion.
A $a_{1} a_{2} \ldots a_{n}$	Creep parameters.
B $b_{1} b_{2} \ldots b_{n}$	Creep parameters.

In this model, $G$, is the shear modulus and the instantaneous creep is given by a power law of the form

where $a$ and $b$ are functions of temperature. This model was developed and provided for LSNIKE2D by R. D. Krieg of Sandia National Laboratories.

## Material Type 9 (Blatz-Ko Rubber)

Default heading: Material Type \#9 (Rubber)

$$
\mathbf{G} \mathrm{m}
$$

Shear modulus

The second Piola-Kirchhoff stress is computed as

$$
S_{i j}=\mu\left(\frac{1}{V} C_{i j}-V^{-1 / 1-2 v} \delta_{i j}\right)
$$

where $V$ is the relative volume, $C_{i j}$ is the right Cauchy-Green strain tensor, and $n$ is the

Poisson's ratio which is set to . 463 internally. This stress measure is transformed to the Cauchy stress, $s_{i j}$, according to the relationship

$$
\sigma_{\mathrm{ij}}=\mathrm{V}^{-1} \mathrm{~F}_{\mathrm{ik}} \mathrm{~F}_{\mathrm{jl}} \mathrm{~S}_{\mathrm{lk}}
$$

where $F_{i j}$ is the deformation gradient tensor.

## Material Type 10 (Power Law Plasticity)

Input any two of the following:

BULK $K$	Bulk modulus
E $E$	Young's modulus
G $G$	Shear modulus
PR n	Poisson's ratio

Additional Options:

K $k$
M $m$
FC $f$

MPS $s_{\text {max }}$
MSS $\mathrm{t}_{\text {max }}$
LC lc

See equation below
See equation below
Failure criteria.
=1: Mohr-Coulomb.
=2: Drucker-Prager
$=3$ : check both
Maximum pricipal stress (optional).
Maximum shear stress (optional).
Optional failure curve number.

The stress-strain curve for this model is based on the following equation:

$$
\sigma_{y}=k\left(\varepsilon_{e}+\bar{\varepsilon}^{p}\right)^{n}
$$

## Material Type 12 (Power Law Thermo Plasticity)

NPTS $n$
T $T_{1} T_{2} \ldots T_{n}$
$\mathbf{E} E_{1} E_{2} \ldots E_{n}$
$\mathbf{P R} \mathbf{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{n}$
$\mathbf{K} k_{1} \ldots k_{n}$
$\mathbf{M} m_{1} \ldots m_{n}$

Number of temperature points (£8).
Temperatures
Young's moduli
Poisson's ratios
See equation below
See equation below

The stress-strain curve for this model is based on the following equation:

$$
\sigma_{y}=k\left(\varepsilon_{e}+\bar{\varepsilon}^{p}\right)^{n}
$$

## Material Type 22 (Frazer-Nash Rubber Model)

This model implements a hyperelastic constitutive law described in [13].
C001 C001
C010 C010
C020 C020
C100 C100
C101 C101
C110 C110
C200 C200
C210 C210
C300 C300
C400 C400

The strain energy function, $U$, is defined in terms of the input constants as:

$$
\begin{aligned}
U= & C_{100} I_{1}+C_{200} I_{1}^{2}+C_{300} I_{1}^{3}+C_{400} I_{1}^{4}+C_{010} I_{2}+ \\
& C_{020} I_{2}^{2}+C_{110} I_{1} I_{2}+C_{210} I_{1}^{2} I_{2}+C_{001} I_{3}+C_{101} I_{1} I_{3}
\end{aligned}
$$

The derivative of $U$ with respect to a component of strain gives the corresponding component of stress:

$$
S_{i j}=\frac{\partial U}{\partial E_{i j}}=2 \frac{\partial U}{\partial C_{i j}}
$$

where, $S_{i j}, E_{i j}$ and $C_{i j}$ are the second Piola-Kirchhoff stress tensor, the Green-St. Venant strain tensor, and the right Cauchy-Green deformation tensor, respectively.

## 23. LS-NIKE3D Commands and Materials

Analysis options are code dependent. They can be set either in the control section of the LS-INGRID input file or in the graphics phase. These commands become active when LS-NIKE3D output is selected with the NK3D command.

ANAL	$n$	$\begin{aligned} & \text { Analysis type } \\ & \text { ="STAT": static analysis (default) } \\ & \text { ="DYN": direct time integration } \\ & \text { ="DYNS": direct time integration with tatic } \\ & \text { initialization. } \\ & \text { ="EIGE": eigenvalue extraction. } \end{aligned}$
BWMO	$n$	Bandwidth minimization option.
		="ON": perform minimization in analysis code (default).   ="OFF": don't minimize bandwidth.
DCTOL	tol	Convergence tolerance on displacements. LSNIKE3D defaults to 0.001 .
DELT	D $t$	Time step size for LS-NIKE3D.
DTMAX	D	Maximum step size permitted. If $\mathrm{SSO}=$ "AUTO" the default is set by LS-NIKE3D.
DTMN	$d$	Minimum step size permitted. If $\mathrm{SSO}=$ "AUTO" the default is set by LS-NIKE3D.
ECTOL	tol	Convergence tolerance on energy. LS-NIKE3D defaults to 0.01 .
GRAV	$g_{x} g_{y} g_{z}$	Gravity acceleration vector. The gravitational field is scaled in time by load curve one.
GSTIF	on/off	Geometric stiffness option. The default is off and generally gives the best results.
IPLT	$n$	Node and element data dump interval for TAURUS post-processing.
LST	tol	Line search tolerance.
MSRF	$n$	Maximum number of stiffness reformations per time step. LS-NIKE3D defaults to the recommended value of 15 .
NBEI	$n$	The number of time steps between equilibrium iterations.


NBSR	$n$	The number of time steps between stiffness matrix reformation.
NEIG	$n$	Number of eigenvectors. This option turns on the subspace iteration eigenvalue/eigenvector solution method and overrides all other solution options. Eigenvectors are mass normalized and written into the graphics database. The time word corresponds to the frequency in radians/units of time.
NIBSR	$n$	Maximum number of equilibrium iterations permitted between stiffness matrix reformation. LS-NIKE3D defaults to the recommended value of 10 .
NIP1	$s$	First Newmark integration parameter.
NIP2	$s$	Second Newmark integration parameter.
NSMD	$n$	$\begin{aligned} & \text { Nonlinear solution method. } \\ & \quad=\text { "BFGS": BFGS (default) } \\ & \text { ="BROY": Broyden's } \\ & \text { ="MODN": modified Newton } \end{aligned}$
		To obtain a linear elastic solution, NBSR and NBEI should be larger than the number of time steps in the problem.
		The default parameters for nonlinear solution methods are near optimal. If a problem is having trouble converging the fixes include decreasing the time step, adding dynamic effects, or trying to eliminate some of the nonlinearities.
NSTEP	$n$	Number of desired time steps.
RFTS	$r$	Reduction factor for tangential stiffness. This is used for modeling the stick condition due to friction in the penalty formulation of contact.
SBRF	$n$	Number of time steps between restart file generation. If zero, LS-NIKE3D writes a restart file as it terminates.
SHIFT	W	Shift frequency in hertz. This option works with the eigenvalue/eigenvector solution method. Using this option, NIKE will find the NEIG eigenvalues nearest to $w$. If the model has rigid body modes, a negative value for $w$ should be used to make the run stable. If $w$ is exactly the same value as an eigenvalue the system becomes singular.


SSIT	$s$	Slide surface insertion tolerance
SSO	$u$	Step size option.   "AUTO"   "MANUAL"
SSOO	$n$	Optimal number of iterations per step.
TEO	$i$	Thermal effects option   $=0$ : no thermal effects.   $=N$ : nodal temperatures are defined in input and are scaled according to a time function. $N$ is the load curve number.   $=-1$ : at each time step a new temperature state is read from a disk file. The time word at the beginning of each temperature state is ignored.   $=-2$ : at each time step a temperature state is interpolated from the temperature state in a disk file. Therefore the time words at the beginning of each temperature state is used.   $=-3$ : the disk file containing temperatures has only one state. The initial state is assumed to be zero.
TERM	$t$	Terminate dynamic time integration at time $t$. The dynamic time step size will be computed if this command is used instead of the "DELT" command.

### 23.1 LS-NIKE3D Material Input

LS-NIKE3D material input is possible after the NK3D command has been input (see Control Commands). The form of this input is: MAT $n$ TYPE $m$ \{options specific to material type $m\}$ \{general material options\} ENDMAT. $n$ is a material name which is assigned a number in the order that they occur in the input. Therefore, the materials should be defined in order before any additional use of materials is made.

## Material Type 1 (Elastic)

Default heading: Material Type \#1 (Elastic)

Input any two of the following.

BULK $K$
E $E$
G $G$
PR n

Material Type 2 (Orthotropic Elastic)

EA $E_{a}$	See constitutive matrix below.
EB $E_{b}$	
$\mathrm{EC} E_{c}$	
PRBA $u_{\text {ba }}$	
PRCA $u_{c a}$	
PRCB $u_{\mathrm{cb}}$	
GAB $G_{a b}$	
GBC $G_{b c}$	
GCA $G_{c a}$	
AOPT aopt	Material axes option (Figure 23-1).
	$=0.0$ : locally orthotropic with materials axes by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 23-1).
	=1.0: locally orthotropic with materials axes by a point in space and global location of element center.
	=2.0: globally orthotropic with materials axes determined by vectors defined below.
	=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.
$\mathbf{X P} x_{p}$	Define for $\mathrm{AOPT}=1$.
YP $y_{p}$	Define for $\mathrm{AOPT}=1$.
ZP $z_{p}$	Define for $\mathrm{AOPT}=1$.
A1 $a_{1}$	Define for $\mathrm{AOPT}=2$.
A2 $a_{2}$	Define for $\mathrm{AOPT}=2$.
A3 $a_{3}$	Define for $\mathrm{AOPT}=2$.
D1 $d_{1}$	Define for $\mathrm{AOPT}=2$.

D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

The material law that relates stresses to strains is defined as:

$$
\mathrm{C}=\mathrm{T}^{\top} \mathrm{C}_{\mathrm{L}} \mathrm{~T},
$$

Where $\mathrm{lo}\left(\mathrm{T},{ }_{\sim}\right)$ is a transformation matrix, and $\operatorname{lo}\left(\mathrm{C}, \sim_{\sim} \mathrm{L}_{\mathrm{L}}\right.$ is the constitutive matrix defined in terms of the material constants of the orthogonal material axes, $a, b$, and $c$. The inverse of lo(C, $)_{\sim}$ L is defined as


Note that $\frac{v_{a b}}{E_{a}}=\frac{v_{b a}}{E_{b}}, \frac{v_{c a}}{E_{c}}=\frac{v_{a c}}{E_{a}}, \frac{v_{c b}}{E_{c}}=\frac{v_{b c}}{E_{b}}$.

AOPT=0.0 default
 to the z -axis
(c)


AOPT=2.0 define $\mathbf{a}$ and $\mathbf{d}$

AOPT=3.0

Figure 23-1. Options for determining principal materials axes: (a) AOPT $=0.0$, (b) AOPT $=1.0$, and $(c)$ AOPT $=2.0$.

## Material Type 3 (Kinematic/Isotropic Elastic/Plastic)

Default heading: Material Type \#3 (Elastic-Plastic)

Input any two of the following:

## BULK $K$

E $E$
G $G$
PR $n$

Bulk modulus
Young's modulus
Shear modulus
Poisson's ratio

Additional Options:

SIGY $\mathrm{s}_{y}$
ETAN E ${ }_{t}$
BETA b'
NPTS $n$

ES $\mathrm{s}_{y 1} \mathrm{~s}_{y 2} \ldots \mathrm{~s}_{y n}$
EPS $\mathrm{e}_{p 1} \mathrm{e}_{p 2} \cdots \mathrm{e}_{p n}$

Yield stress
Hardening modulus
Hardening parameter, $0 \leq \mathrm{b}^{\prime} \leq 1$
Number of points on stress-effective plastic strain curve.
Effective stress.
Effective plastic strain.

Isotropic, kinematic, or a combination of isotropic and kinematic hardening may be specified by varying b' between 0 and 1 . For b' equal to 0 and 1 , respectively kinematic and isotropic hardening are obtained as shown in Figure 23-2. Effective stress is defined in terms of the deviatoric stress tensor, $\mathrm{S}_{\mathrm{ij}}$ as:

$$
\bar{\sigma}=\left(\frac{3}{2} S_{i j} S_{i j}\right)^{1 / 2}
$$

where,

$$
S_{i j}=\sigma_{i j}-\frac{1}{3} \sigma_{k k} \delta_{i j}
$$

and effective plastic strain by:

$$
\bar{\varepsilon}^{\mathrm{p}}=\int_{0}^{\mathrm{t}} \mathrm{~d} \bar{\varepsilon} \mathrm{p}
$$

where $t$ denotes time and

$$
d \bar{\varepsilon}^{p}=\left(\frac{2}{3} d \varepsilon_{i j}^{p} d \varepsilon_{i j}^{p}\right)^{1 / 2}
$$



Figure 23-2. Elastic-plastic behavior with isotropic and kinematic hardening where $l_{0}$ and $l$ are undeformed and deformed length of uniaxial tension specimen.

## Material Type 4 (Thermo-Elastic-Plastic)

Default heading: Material Type 4 (Thermo-Elastic-Plastic)

NPTS $n$

TEMP $T_{1} T_{2} \ldots T_{n}$
$\mathbf{E} E_{1} E_{2} \ldots E_{n}$
$\operatorname{PR} \mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{n}$
ALPHA $\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{n}$
SIGY $\mathrm{s}_{y 1} \mathrm{~s}_{y 2} \ldots \mathrm{~s}_{y n}$
ETAN $E_{t 1} E_{t 2} \ldots E_{t n}$

Number of temperature values for which material constants are defined.
Temperatures
Young's moduli
Poisson's ratios
Coefficients of thermal expansion.
Yield stresses
Tangent moduli

## Material Type 5 (Soil and Crushable Foam)

Default heading: Material Type 5 (Soil and Crushable Foam)

Input any two of the following:

BULK $K$
E $E$
G $G$
PR $n$

Additional Options:
AO $a_{0}$
A1 $a_{1}$
A2 $a_{2}$
PC $P_{c}$
UL uopt

NPTS $n$
VS $\mathrm{e}_{v 1} \mathrm{e}_{v 2} \ldots \mathrm{e}_{v n}$
$\mathbf{P} p_{1} p_{2} \ldots p_{n}$

Bulk modulus
Young's modulus
Shear modulus
Poisson's ratio

Yield function constant.
Yield function constant
Yield function constant
Pressure cutoff for tensile fracture
Unloading option
$=0$ : volumetric crushing
$=1$ : loading and unloading are the same. Number of points in volumetric strain versus pressure curve ( $n £ 10$ ).
Volumetric strain values
Pressures corresponding to volumetric strain values

The deviatoric yield function, $\phi$, is described in terms of the second invariant $J_{2}$.

$$
J_{2}=\frac{1}{2} \mathrm{sij}_{\mathrm{j}} \mathrm{~S}_{\mathrm{ij}}
$$

Pressure, $p$, and constants $a_{0}, a_{1}$, and $a_{2}$ as:

$$
\phi=J_{2}-\left[a_{0}+a_{1} p+a_{2} p^{2}\right]
$$

On the yield surface, $J_{2}=1 / 3\left(\mathrm{~s}_{\mathrm{y}}\right)^{1 / 2}$, where $\mathrm{s}_{\mathrm{y}}$ is the yield stress, i.e.,

$$
\left.\left.\sigma_{y}=\mid 3 l a_{0}+a_{1} p+a_{2} p^{2}\right)\right]^{1 / 2}
$$

For elastic-perfectly plastic behavior $a_{1}=a_{2}=0$, and $\left(3 a_{0}\right)^{1 / 2}$ defines the yield strength. The volumetric strain is given by the natural logarithm of the relative volume $V$. If the pressure drops below the cutoff value, PC, then it is reset to that value.


Figure 23-3. Volumetric strain versus pressure curve for soil and crushable foam model.

## Material Type 6 (Viscoelastic)

G $G_{0}$	Short term shear modulus.
GI $G^{\prime}$	Long term shear modulus.
K $K$	Bulk modulus.
BETA b	Decay constant.

The shear relaxation behavior is described by:

$$
\mathrm{G}(\mathrm{t})=\mathrm{G}+\left(\mathrm{G}_{0}-\mathrm{G}\right) \mathrm{e}^{-\beta \mathrm{t}}
$$

A Jaumann rate formulation is used:

$$
\stackrel{\nabla}{\sigma_{\mathrm{ij}}^{\prime}}=2 \int_{0}^{\mathrm{t}} \mathrm{G}(\mathrm{t}-\tau) \mathrm{D}_{\mathrm{ij}}^{\prime}(\tau) \mathrm{dt}
$$

where the prime denotes the deviatoric part of the stress rate, $\stackrel{\nabla}{\sigma}_{i j}$, and the strain rate $D_{I J}$.

Material Type 7 (Thermal Orthotropic Elastic)

Default heading: Material Type \#7 (Thermal Orthotropic Elastic)

EA $E_{a}$
See constitutive matrix below.
EB $E_{b}$
$\mathrm{EC} E_{c}$
PRBA $v_{b a}$
PRCA $v_{c a}$
PRCB $v_{c b}$
ALPA $\alpha_{a} \quad$ Thermal expansion coefficient along material axis

ALPB $\alpha_{b}$
a.

Thermal expansion coefficient along material axis
b.

ALPC $\alpha_{c}$
Thermal expansion coefficient along material axis
c.

GAB $G_{a b}$
AOPT aopt
Material axes option (Figure 22-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $n_{1}, n_{2}$, and $n_{4}$, (see Figure 22-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by $\psi_{\mathrm{G}}$.
$\mathbf{R P} r_{p}$
$\mathbf{Z P} z_{p}$
PSIG $\psi_{G}$

Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
In radians, define for $\mathrm{AOPT}=2$.

## Material Type 8 (Thermo-Elastic-Creep)

Default heading: Material Type \#8 (Thermo-Elastic-Creep)

NPTS n

TEMP $T_{1} T_{2} \ldots T_{n}$
G $G_{1} G_{2} \ldots G_{n}$
K $K_{1} K_{2} \ldots K_{n}$
ALPHA $\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{n}$
A $a_{1} a_{2} \ldots a_{n}$
B $b_{1} b_{2} \ldots b_{n}$

Number of temperature values for which material constants are defined.
Temperatures
Shear moduli
Bulk moduli
Coefficients of thermal expansion
Creep parameters
Creep parameters

In this model, $G$, is the shear modulus and the instantaneous creep is given by a power law of the form

where $a$ and $b$ are functions of temperature. This model was developed and provided for LSNIKE3D by R. D. Krieg of Sandia National Laboratories.

## Material Type 9 (Blatz-Ko Rubber)

Default heading: Material Type \#9 (Rubber)

G $\mu$
Shear modulus

The second Piola-Kirchhoff stress is computed as
$\square$
where $V$ is the relative volume, $C_{i j}$ is the right Cauchy-Green strain tensor, and $n$ is the Poisson's ratio which is set to 463 internally. This stress measure is transformed to the Cauchy stress, $s_{i j}$, according to the relationship

$$
\sigma_{i j}=V^{-1} F_{i k} F_{j l} S_{k l}
$$

where $F_{i j}$ is the deformation gradient tensor.

## Material Type 10 (Power Law Thermo Plasticity)

NPTS $n$
T $T_{1} T_{2} \ldots T_{n}$
$\mathbf{E} E_{1} E_{2} \ldots E_{n}$
$\boldsymbol{P R} \mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{n}$
$\mathbf{K} k_{1} \ldots k_{n}$
$\mathbf{M} m_{1} \ldots m_{n}$

Number of temperature points (£8).
Temperatures
Young's moduli
Poisson's ratios
See equation below
See equation below

The stress-strain curve for this model is based on the following equation:

$$
\sigma_{y}=k\left(\varepsilon_{e}+\bar{\varepsilon}^{p}\right)^{n}
$$

## Material Type 11 (Compressible Mooney-Rivlin Rubber)

This material model provides an alternative to the Blatz-Ko rubber model. The implementation is due to Maker [12].

A $A$
B $B$
PR $n$

Constant A.
Constant B.
Poisson's ratio.

The strain energy density function is defined as:

$$
W=A(\mathrm{I}-3)+B(\mathrm{II}-3)+C\left(\mathrm{III}^{-2}-1\right)+D(\mathrm{III}-1)^{2}
$$

where

$$
C=0.5 A+B .
$$

$D=\frac{A(5 \mathrm{v}-2)+B(11 \mathrm{v}-5)}{2(1-2 \mathrm{v})}$
$\mathrm{n}=$ Poisson's ratio.
$2(A+B)=G=$ shear modulus of linear elasticity.
I, II, III are invariants of the right Cauchy-Green Tensor.

## Material Type 20 (Rigid Body)

All elements with the same material number become a single rigid body if the material is type 20 whether the elements are connected or not. Density and two independent material strength constants are required to establish penalties for contact surfaces and joints.

Input any two of the following:

## BULK $K$

E $E$
G $G$
PR n

Bulk modulus.
Young's modulus.
Shear modulus.
Poisson's ratio.

Additional Options:

LC lc
SCALE scale
VVEC $v_{x} v_{y} v_{z}$

Load curve number for displacement control.
Scale factor.
Define the vector $\mathbf{v}$ for the direction cosines.

Material Type 23 (Thermal Orthotropic with Curves)

NPTS npts
Number of points $(1<\mathrm{NPTS}<50)$.
EA $\left(E_{a}\right)_{1} \ldots\left(E_{a}\right)_{\mathrm{n}}$
$\mathbf{E B}\left(E_{b}\right)_{1} \ldots\left(E_{b}\right)_{\mathrm{n}}$
$\mathbf{E C}\left(E_{c}\right)_{1} \ldots\left(E_{c}\right)_{\mathrm{n}}$
PRBA $\left(\mathrm{n}_{\mathrm{ba}}\right)_{1} \ldots\left(\mathrm{n}_{b a}\right)_{n}$
PRCA $\left(\mathrm{n}_{\mathrm{ca}}\right)_{1} \ldots\left(\mathrm{n}_{c a}\right)_{n}$

PRCB $\left(\mathrm{n}_{\mathrm{cb}}\right)_{1} \ldots\left(\mathrm{n}_{c b}\right)_{n}$
AA $\left(\mathrm{a}_{a}\right)_{1} \ldots\left(\mathrm{a}_{a}\right)_{n}$
$\mathbf{A B}\left(\mathrm{a}_{b}\right)_{1} \ldots\left(\mathrm{a}_{b}\right)_{n}$
$\mathbf{A C}\left(\mathrm{a}_{c}\right)_{1} \ldots\left(\mathrm{a}_{c}\right)_{n}$
GAB $\left(G_{a b}\right)_{1} \ldots\left(G_{a b}\right)_{n}$
$\operatorname{GBC}\left(G_{b c}\right)_{1} \ldots\left(G_{b c}\right)_{n}$
GCA $\left(G_{c a}\right)_{1} \ldots\left(G_{c a}\right)_{n}$

AOPT aopt
$\mathbf{X P} x_{p}$
YP $y_{p}$
$\mathbf{Z P} z_{p}$
A1 $a_{1}$
A2 $a_{2}$
A3 $a_{3}$
D1 $d_{1}$
D2 $d_{2}$
D3 $d_{3}$
V1 $v_{1}$
V2 $v_{2}$
V3 $v_{3}$

Material axes option (Figure 23-1).
$=0.0$ : locally orthotropic with materials axes determined by element nodes $\mathrm{n}_{1}, \mathrm{n}_{2}$, and $\mathrm{n}_{4}$, (see Figure 23-1).
=1.0: locally orthotropic with materials axes determined by a point in space and global location of element center.
=2.0: globally orthotropic with materials axes determined by vectors defined below.
=3.0: SHELL ELEMENTS ONLY: The material axis is locally orthotropic with material axes determined by a vector in the plane of the shell and the shell normal.

Define for $\mathrm{AOPT}=1$.
Define for $\mathrm{AOPT}=1$.
Define for $A O P T=1$.
Define for $\mathrm{AOPT}=2$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.
Define for $\mathrm{AOPT}=3$.

## 24. TOPAZ Commands and Materials

Analysis options are code dependent. They can be set either in the control section of the LS-INGRID input file or in the interactive phase. These commands become active when TOPAZ2D or TOPAZ3D output is selected with the TZ2D or TZ3D commands respectively.

BWMO	$n$	$\begin{aligned} & \text { Bandwidth minimization option. } \\ & \text { ="ON": minimize bandwidth (default). } \\ & \text { ="OFF": don't minimize bandwidth. } \end{aligned}$
DCMX	$\mathrm{d} t$	Desired maximum temperature change in each time step above which the time step will decrease.
DCTOL	tol	Convergence tolerance for equilibrium iterations (default $=0.0001$ ).
DELT	D $t$	Time step size for fixed time step and initial time step for variable time step.
DTMAX	$\mathrm{D} t_{\text {max }}$	Maximum time step size.
DTMIN	$\mathrm{D} t_{\text {min }}$	Minimum time step size.
FLUX	$n$	$\begin{aligned} & \text { Nodal heat flux calculations } \\ & \text { ="ON": perform calculations } \\ & \text { ="OFF": don't perform calculations } \\ & \quad \text { (default). } \end{aligned}$
IPLT	$n$	Number of time steps between output of graphics database.
IPRT	$n$	Number of time steps between output printouts.
IUNIT	$n$	$\begin{aligned} & \text { Temperature units } \\ & \text { ="DIME": dimensionless } \\ & \text { ="CENT": centigrade } \\ & \text { ="FAHR": fahrenheit } \\ & \text { ="KELV": Kelvin } \\ & \text { =."RANK": Rankine } \end{aligned}$
LINEAR		Problem is linear.
MFTS	$t$	Modification factor for increasing/decreasing time step.
MRDI	$m$	Maximum number of radiosity iterations.
MSRF	$n$	Maximum number of conductance matrix reformations per time step $($ default $=10)$.


NBEI	$n$	The number of time steps between equilibrium iterations (default $=1$ ).
NBSR	$n$	The number of time steps between conductance matrix reformation $($ default $=1)$.
NIBSR	$n$	Maximum number of equilibrium iterations permitted per conductance matrix reformation.
NIP1	$x$	First Newmark integration parameter. (default =0.5).   $=1.0$ : fully implicit
NONLINEAR		Problem is non-linear.
NSSD	$n$	Number of surface subdivision for radiation view factor calculation (default $=5$ ).
PHASE	$n$	```Phase charge flag = "ON": perform phase change calculation = "OFF": no phase change calculation (default).```
RADI	$n$	$\begin{aligned} & \text { Radiation calculation type } \\ & \quad=\text { "VIEW": view factors } \\ & \text { = "EXCH": exchange factors } \end{aligned}$
RBAND	$m n$	Radiation bands. The number of wavelength break points is $m$ and the number of curves is $n$.
	$1_{1} 1_{2} \ldots l_{m}$	Wavelength breakpoints
	$\left(E_{1}\right)_{1}\left(E_{2}\right)_{1} \ldots\left(E_{m}\right)_{1}$	Emissivities for curve $l$
	$\left(E_{1}\right)_{\mathrm{n}}\left(E_{2}\right)_{n} \ldots\left(E_{m}\right)_{n}$	Emissivities for curve $n$
RCTOL	$s$	Radiosity convergence tolerance.
RELAX	$r$	Relaxation parameter ( default $=1$ )
SBC	$s$	Stefan-Boltzmann constant.
SBRF	$n$	Number of time steps between restart dumps.
SOLUTION STEADY		Analysis is steady state.
SOLUTION TRANSIENT		Analysis is transient.
STEP	$n$	$\begin{aligned} & \text { Time step code } \\ & \text { ="FIXE": fixed time step } \\ & \text { ="VARI": variable time step. } \end{aligned}$
TERM	$t$	Final problem time.

### 24.1 TOPAZ MATERIAL InPUT

TOPAZ material input is possible after the TZ2D or TZ3D command has been input (see Control Commands). The form of this input is: MAT $n$ TYPE $m$ \{options specific to material type $m\}$ \{general material options\} ENDMAT. $n$ is a material name which is assigned a number in the order that they occur in the input. Therefore, the materials should be defined in order before any additional use of materials is made.

## Material Type \#1 (Isotropic)

RO r	Density
TLHA t	Temperature at which latent heat is absorbed or   released.
LH h	Latent heat.
TGC lc	Thermal generation rate curve number.
TGM r	Thermal generation rate multiplier.
$\mathbf{H C P}$ c	Heat capacity.
K k	Thermal conductivity
ENDMAT	End this material model.

## Material Type 2 (Orthotropic)

RO r
TLHA $t$

LH $h$
TGC $l c$
TGM $r$
HCP $c$
K1 $k_{1}$
$\mathbf{K} 2 k_{2}$
K3 $k_{3}$
ENDMAT

Density
Temperature at which latent heat is absorbed or released.

Latent heat.
Thermal generation rate curve number.
Thermal generation rate multiplier.
Heat capacity.
Thermal conductivity in local 1 direction.
Thermal conductivity in local 2 direction.
Thermal conductivity in local 3 direction.
End this material model.

Material Type 3 (Isotropic Temperature Dependent)

RO r
TLHA $t$

LH $h$
TGC $l c$
TGM $r$
NPTS $n$
TEMP $T_{1} T_{2} \ldots T_{n}$
$\mathbf{C P} C_{1} C_{2} \ldots C_{n}$
K $K_{1} K_{2} \ldots K_{n}$
ENDMAT

Density
Temperature at which latent heat is absorbed or released.

Latent heat.
Thermal generation rate curve number.
Thermal generation rate multiplier.
Number of temperature points.
Temperatures.
Heat capacities
Thermal conductivities.
End this material model.

## Material Type 4 (Orthotropic Temperature Dependent)

RO r
TLHA t

LH h
TGC lc
TGM $r$
NPTS $n$
TEMP $T_{1} T_{2} \ldots T_{n}$
$\mathbf{C P} C_{1} C_{2} \ldots C_{n}$
$\mathbf{K 1}\left(K_{1}\right)_{1}\left(K_{1}\right)_{2} \ldots\left(K_{1}\right)_{n}$
K2 $\left(K_{2}\right)_{1}\left(K_{2}\right)_{2} \ldots\left(K_{2}\right)_{n}$
$\mathbf{K 3}\left(K_{3}\right)_{1}\left(K_{3}\right)_{2} \ldots\left(K_{3}\right)_{n}$
ENDMAT

Density
Temperature at which latent heat is absorbed or released.
Latent heat.
Thermal generation rate curve number.
Thermal generation rate multiplier.
Number of temperature points.
Temperatures.
Heat capacities
Thermal conductivities in local 1 direction.
Thermal conductivities in local 2 direction
Thermal conductivities in local 3 direction.
End this material model.

## ACKNOWLEDGMENTS

Any work of this magnitude obviously was influenced by a large number of people who cannot possibly be given proper credit. The authors very much appreciate the all of the inputs whether positive or hostile which have aided in this work. The original work of Bill Cook on INGEN influenced LS-INGRID considerably. Special thanks must be given to Russ Rosinsky for his patience in finding bugs, recommending new capabilities and proof reading this manual. Steve Sackett, Greg Kay, and Tracy Glover also helped in providing sample problems, new ideas, and uncovering bugs.

Developments at SPARTA benefited from David Lichtblau's and Brian Wainscott's work on the calculator program. Sophie Tsui and Dawn Greayer made contributions to the materials processing portion and Bill Campbell provided some useful ideas for surface intersection algorithms. Sharon Kiefer made some important contributions in debugging and improving the manufacturing capabilities. The NURB curve and surface algorithms were developed by Alan Winslow.

Eunice Hinkle, Nikki Falco, Valli A. James and Debbie Aiken all suffered through the preparation of various versions of this manual. The University of Tennessee, Lawrence Livermore National Laboratory and SPARTA, Inc. all generously provided computer resources to allow LS-INGRID to be developed.

## REFERENCES

[1] Hallquist, John O., "LS-NIKE2D User's Manual", LSTC Report 1006, 1990
[2] Hallquist, John O., "NIKE3D: An implicit, finite-deformation, finite element code for analyzing the static and dynamic response of three-dimensional solids", University of California, Lawrence Livermore National Laboratory, UCID-18822, 1984.
[3] Hallquist, John O., "LS-DYNA2D User's Manual", LSTC Report 1004, 1990
[4] Hallquist, John O., "LS-DYNA3D User's Manual", LSTC Report 1007, 1990
[5] Shapiro, Arthur B., "TOPAZ2D - A three-dimensional finite element heat transfer
code", University of California, Lawrence Livermore National Laboratory, Rept. UCID20484 (1985).
[6] Shapiro, Arthur B., "TOPAZ3D - A three-dimensional finite element heat transfer code", University of California, Lawrence Livermore National Laboratory, Rept. UCID20484 (1985).
[7] Cook, William A., "INGEN: A General Purpose Mesh Generator for Finite Element Codes," Los Alamos Scientific Laboratory, Rept. LA-7135-MS (1978).
[8] Hallquist, John O., "LS-MAZE: An Input Generator for NIKE2D, DYNA2D, and TOPAZ2D", LSTC Report 1005, 1990.
[9] Steinberg, D.J. and M.W. Guinan, "A High-Strain-Rate Constitutive Model for Metals," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-80465 (1978).
[10] Woodruff, J.P. "KOVEC User's Manual," University of California, Lawrence
Livermore National Laboratory, Rept. UCRL-51079 (1973).
[11] Johnson, G.R. and W.H. Cook, "A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures." Presented at the Seventh International Symposium on Ballistics, The Hague, Netherlands, April 1983.
[12] Maker, B.N., Private communication, Lawrence Livermore National Laboratory.
[13] Kenchington, G.J.,"A Non-Linear Elastic Material Model for DYNA3D, "Proceedings of the DYNA3D User's Group Conference, September 1988, published by Boeing Computer Services (Europe) Limited.
[14] Cochran, S.G., and J. Chan, "Shock Initiation and Detonation Models in One and
Two Dimensions," University of California, Lawrence Livermore National Laboratory,
Rept. UCID-18024 (1979).
[15] Lee, E.L., and C.M. Tarver, "A Phenomenological Model of Shock Initiation in Heterogenous Explosives," University of California, Lawrence Livermore National Laboratory, Rept. UCRL-83618 (1979).

## Index

Acceleration Boundary
Condition Applying 95
Accelerometer 13 Defining 95 Displaying 107
Advection Formulation DYNA3D 169
Airbag
DYNA3D Ouput 170
Folding 18, 20, 111, 113
Inflator Model 13
Pentration Check 113
Sealing 114
Single Surface Contact
Algorithm 31
ALE Formulation
DYNA3D 170
ALE Smoothing Applying 101
Analytical Contact 20
Angular Velocity Initial 29, 68
Anisotropic Plasticity 226
Arbitrary Numbering DYNA3D 167
Arrival Time Pressure Load 11
Automatic Time Step
NIKE2D 255
TOPAZ 295
AVS
DYNA3D 170
Axisymmetry
NIKE2D 253
Bandwidth Minimization
NIKE2D 253
NIKE3D 273
TOPAZ 294
Batch Operation 12, 26
BCIZ Shell
DYNA3D 179
Beam
Area 177
Element Generation 63
Formulation 177
Moment of Area 178
Quadrature 178
Thickness 179
Belytschko-Lin-Tsay Shell
DYNA3D 179
Belytschko-Schwer Beam
DYNA3D 177, 179
Blatz-Ko Rubber
DYNA3D 191
NIKE2D 267
Boltzmann Constant
TOPAZ 295
Boundary Condition
Constraining 95

Displaying 109
Brick Formulation
DYNA3D 177
Brode Function DYNA3D 167
Bulk Viscosity
DYNA3D 177
C0 Triangle
DYNA3D 179
CAL3D 20, 179
Repositioning Materials 35
Unit Conversions In
Coupling 168
Cap Model 214
Cardan Joint
Defining 19
Circular Arc
Standard Part 60, 61, 62
Coincident Node Removal 107
Commands
136
1A 101
1R 101
224, 36
2A 101
2R 102
A $14,61,157,159,196$,
201, 217, 242, 266, 287,
290
A0 162, 203
A0F 162, 203
A1 149, 155, 162, 182,
188, 194, 203, 208, 210,
212, 216, 224, 227, 232,
235, 243, 262, 278, 284,
293
A10 245
A11 245
A12 245
A13 31, 245
A14 245
A1F 162, 203
A2 149, 155, 162, 182,
188, 194, 203, 208, 210,
212, 216, 224, 227, 232,
235, 243, 262, 278, 284,
293
A20 245
A21 245
A22 245
A23 15, 245
A24 245
A3 31, 182, 208, 210, 212,
216, 224, 227, 232, 235,
243, 278, 293
A30 245
A31 245
A32 245
A33 245
A40 245
A41 245
A42 245
A43 245

A5 31
A50 245
A51 245
A52 245
A53 245
A60 245
A61 245
A62 245
A63 245
A70 245
A71 245
A72 245
A73 245
AA 208, 211, 292
AB 208, 211, 292
ABSTAT 170
AC 62, 208, 211, 292
ACC 95
ACCE 13, 95
ACCI 95
ACE 62
$\operatorname{acos} 8$
ADD 24
ADVECTION 169
AE 61, 248
AJNP 107
ALAB 117
ALE 170
ALPA 265
ALPB 265
ALPC 265
ALPH 209, 231, 234
ALPHA 148, 163, 187,
214, 228, 229, 245, 261,
266, 283, 287
AM 107
AMN 107
ANAL 253, 273
ANGL 20
ANGLES 177
AO 149, 188, 262, 284
AOPT 144, 182, 208, 210,
212, 216, 224, 227, 232,
235, 257, 265, 278, 293
AP 107, 248
AP23 15
ARBITRARY 167
ARRI 11
ARROW 107
asa 8
ASCII 107
ASCL 117
ASET 117
asin 8
ass 8
ASYM 28
$\operatorname{atan} 8$
$\operatorname{atan} 28$
AUTO 63
AVEC 207
AVER 174
AVGN 125
AVSFLT 170
AXIS 16

B 95, 96, 98, 100, 103, 157, 159, 196, 201, 217, 242, 266, 287, 290
B1 63, 162, 203, 243
B2 64, 243
BATCH 12
BCND 78
BCNR 78
BCOUT 170
BCSP 78
BE 248
BEAM 73, 177
BEAMS 79
BELT 12, 96, 170
BETA 146, 151, 157, 163 ,
185, 190, 196, 214, 225,
233, 245, 259, 264, 281,
286
BFORM 177
BG 63
BIAS 64
BIRTH 31
BLEN 125
BLND 129
BOND 31
BOXM 31
BOXS 31
BP 157, 196, 248
BPTOL 107
BQL 142, 177
BQQ 142, 177
BQT 142, 177
BRFORM 177
BRICKS 81
BRODE 139, 167
BRUL 167
BULK 143, 146, 149, 161,
181, 185, 188, 198, 199,
204, 205, 206, 207, 213,
218, 219, 220, 225, 226,
228, 229, 236, 237, 256,
259, 262, 268, 277, 281,
284, 288, 291
BUPD 168
BWMO 253, 273, 294
C001 221, 270
C010 221, 270
C020 221, 270
C1 241, 247
C100 221, 270
C101 221, 270
C110 221, 270
C2 241, 247
C200 221, 270
C210 221, 270
C23 15
C3 241, 247
C300 221, 270
C4 241, 247
C400 221, 270
C5 241, 247
C6 241, 247
CARDAN 19
CAREH 177

CC 163, 214
CCEN 107
CCOL 107
CE 248
CENT 107
CG 11
CHECK 173
CHORD 17
CHUE 107
CJ 21
CL 11, 139, 167
CMSO 174
CN 247
CN2P 129
CNV 13, 96
CNVI 96
CO 64, 241
COEF 139, 167, 228, 229,
245
COMP 31, 125
CONE 129
CONT 17, 107
COOR 16, 24, 41, 43, 45,
64, 75, 82, 87, 91, 93
COPY 125
$\cos 8$
$\cosh 8$
COSINE 11
COUPLE 20
CP 14, 15, 129, 139, 167,
248, 299, 300
CP23 15
CPL 64
CR 129, 133
CRX 129
CRY 129
CRZ 129
CSAT 107
CSCA 16, 137
CSE 96
CSEF 223
CSF 223
CSN 96
CSR 213
CSY 96
CSYI 96
CSYM 16
CT 139, 167
CUNI 168
CV 14, 15, 97
CVI 97
CVL 97
CYF 133
CYLI 24, 27, 41, 43, 45,
64, 75, 82, 91, 94, 129,
133
D 65, 107, 153, 163, 192,
214
D0 229
D1 137, 159, 182, 201,
208, 210, 212, 216, 224,
227, 232, 235, 278, 293
D2 137, 159, 182, 201,
208, 210, 212, 216, 224,

227, 232, 235, 278, 293
D2R 168
D3 159, 182, 201, 208,
278, 293
D3HSP 168
D4 159, 201
D5 159, 201
DAMP 13, 31
DBQT 139, 168
DCMX 294
DCTOL 253, 273, 294
DEATH 31
DEBUG 168
DECAY 11
DEFAULT 16
DEFG 207
DEFGEO 170
DEFL 207
DEFORO 170
DELAY 12, 13
DELT 168, 253, 273, 294
DETP 16
DHGQ 139, 169
DHQT 139, 169
DI 65
DI ACCE 107
DI BELT 107
DI CNV 107
DI CSEC 107
DI CSYM 107
DI CV 108
DI CVL 108
DI D 108
DI DETP 108
DI DS 108
DI DSRM 108
DI DX 108
DI DY 108
DI DZ 108
DI EDR 108
DI EPB 108
DI F 108
DI FL 108
DI FLUX 108
DI FSYM 108
DI INTF 108
DI JOY 108
DI JTS 108
DI L3D 108
DI LAX 108
DI M 108
DI MCG 109
DI MK 109
DI NCV 109
DI NFG 109
DI NPB 109
DI NRB 109
DI NSF 109
DI NV 109
DI ORV 109
DI OUTL 109
DI P 109
DI PL 109
DI PM 109

DI PR 109
DI PV 109
DI RB 109
DI RBL 109
DI RBN 109
DI RE 109
DI REL 109
DI RX 109
DI RXN 109
DI RY 109
DI RZ 109
DI SBI 109
DI SFC 109
DI SI 110
DI SL 110
DI SPC 110
DI SPD 110
DI SW 110
DI SY 110
DI SYSJ 110
DI TB 110
DI TI 110
DI TRACER 110
DI VB 110
DI VECT 110
DI WARP 110
DIAD 110
DICOL 110
DIOFF 110
DIST 13
DISTANCE 13
DM 110
DMAX 13
DMEM 111
DMIN 13
DMN 111
DN2D 16
DN3D 16
DNIS 31
DNTS 31
DQL 140, 169
DQQ 140, 169
DRAG 87
DRAW 111
DRDB 174
DRFCTR 169
DROPTS 169
DRTERM 169
DRTOL 169
DS 16, 133
DSAD 111
DSF 117
DSRM 111
DSV 111
DSVS 111
DTMAX 253, 273, 294
DTMIN 294
DTMN 253, 273
DTS 117
DUMMY 31, 78, 79, 80,
81
DYNA3D 93
E 143, 146, 148, 149, 161,
181, 185, 187, 188, 198,

199, 204, 205, 206, 207,
213, 215, 218, 219, 220,
222, 225, 226, 228, 229,
230, 233, 236, 237, 256,
259, 261, 262, 268, 269,
277, 281, 283, 284, 288,
289, 291
E0 241, 242, 243, 244,
245, 247, 248, 250, 252
EA 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
EAAU 215
EB 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
EBBU 215
EC 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
EC1 157, 196
EC2 157, 196
EC3 157, 196
EC4 157, 196
EC5 157, 196
EC6 157, 196
EC7 157, 196
EC8 157, 196
EC9 157, 196
ECCU 215
ECHO 168
ECO 157, 196
ECRV 206
ECTOL 253, 273
EDR 97
EH 155, 194, 198, 199, 204
EI 237
ELEMENT 23
ELLIPSE 179, 207
ELOUT 170
ELPLT 111
EMAX 221
EMIN 221
END 18, 41, 43, 45
ENDEOS 241, 242, 243,
244, 245, 247, 248, 250,
252
ENDMAT 297, 298, 299,
300
ENER 173
ENERGY 118
EOS 142, 177
EPB 97
EPS 155, 162, 194, 203,
213, 259, 281
EPSO 159, 201
EQSP 65
ER 129, 162, 203
ES 155, 162, 194, 203,
213, 259, 281
ET 218, 220, 225, 226
ETAN 146, 148, 162, 185,
187, 203, 206, 213, 259,

261, 281, 283
ETG 222
EULERIAN 170
EXIT 111
$\exp 8,223$
F 157, 196
FAIL 31, 213
FBRT 231, 234
FC 97, 268
FCI 97
FCRIT 248
FCRV 206
FD 31, 97
FDEF 18
FDI 97
FE 31
FEDL 12
FEM 17
FFN 31
FFNE 31
FFS 31
FFSE 31
FIGN 19
FIND 65, 97
FL 97
FLEX 19
FLEXION 19
FLI 97
FLUID 169
FLUX 294
FMOV 20
FN 97
FNL 17
FNU 17
FOLD 111
FOPT 20
FORM 78, 79, 80, 81
FP 199
FRAME 111
FRES 170
FRIC 12, 20, 27, 31
FRV 98
FS 32, 155, 194, 199, 204
FSG 222
FSYM 20
FT 98
FTB 98
FTBI 98
FTI 98
FUNC 17
FV 98
FVI 98
G $115,143,146,149,151$,
$152,155,157,159,161$,
162, 163, 181, 185, 188,
190, 191, 194, 196, 198,
199, 201, 203, 204, 205,
206, 207, 213, 214, 218,
219, 220, 225, 226, 228,
229, 236, 237, 248, 256,
259, 262, 264, 266, 267,
268, 277, 281, 284, 286,
287, 288, 291
GA 32

GAB 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
GABU 215
GAM0 230
GAMA 157, 196
GAMM 15
GAMMA 163, 214, 244,
250, 252
GAMO 157, 196
GBC 182, 208, 209, 211,
223, 231, 234, 278, 292
GBCU 215
GCA 182, 208, 209, 211,
223, 231, 234, 278, 292
GCAU 215
$\operatorname{gcd} 8$
GEFORO 170
GELN 129
GELS 130
GEOC 20, 98
GEOM 140, 253
GFUN 139, 167
GI 151, 190, 264, 286
GLSTAT 170
GMI 21
GMPRT 170
GN 34
GRAV 14, 15, 140, 171,
253, 273
GRID 17, 111
GS 130
GS1 130
GS2 130
GSM 130
GSN 130
GSTIF 253, 273
GTIME 117
H 157, 196, 248
HC 228, 229
HCP 159, 201, 297, 298
HDMG 32
HEAD 142, 177
HEIGHT 139, 167
HGENERGY 171
HGQ 142, 177
HGQT 142, 177
I 59, 65, 248
IARB 171
IDEA 41
IEP 34
IFDT 174
IJ 60
IJK 60
IKEDIT 168
IMGL 142, 178
IN 98
INC 98, 100, 103
INCLUDE 21, 78, 79, 80,
81
INFO 111
INI 98
INSIDE 20
INT 65

INT4 175
INT8 175
INTERNAL 118
IOPT 222
IPLT 253, 273, 294
IPRT 294
IRDMS 171
IRR 178
IRULE-TRAPEZOIDAL
178
IRULE-USER 178
IRULE.GAUSS 178
IS 98
ISI 98
ISS 178
IT 159, 201
ITSS 140, 171
ITT 178
IUNIT 294
J 59, 65
JD 21
JK 60
JOINTS 170
JOY 98
JOYI 98
JT 98
K $60,65,78,79,80,81$,
$151,161,163,190,205$,
209, 214, 231, 234, 237,
264, 266, 268, 269, 286,
287, 288, 289, 297, 299
K1 298, 300
K2 298, 300
K3 298, 300
KAPPA 228
KI 60
KINETIC 118
KU 250
L 111, 137
L2D 125
L3 130
L3D 17, 20, 23, 125
L3E 17
L3P 130
L3R 130
L3S 130
L3V 111
L3VS 111
LABELS 23
LAD 121, 125
LADD 121, 125
LADV 121
LAGRANGIAN 170
LAP 121
LAR 121
LAT 121
LBCV 125
LBCX 125
LBCY 125
LBCZ 125
LC 15, 233, 268, 291
LC1 19, 20
LC2 19
LC3 19

LC4 19
LC5 19
LC6 19
LCA 215
LCAB 215
LCB 215
LCBC 215
LCC 121, 215
LCCA 215
LCD 23, 27
LCDAMP 171
LCDF 23
LCGX 171
LCGY 171
LCGZ 171
LCK 237
LCL 12, 238
lcm 8, 14, 15, 237
LCMAX 171
LCOUTF 15
LCP 12, 162, 203
LCR 162, 203
LCRX 171
LCRY 171
LCRZ 171
LCSS 226
LCU 12, 238
LCUT 126
LCV 27, 32, 111
LD 23, 121
LE 34
LEP 122
LEV 24
LEXP 122, 126
LFOR 126
LH 297, 298, 299, 300
LIGHT 111
LIMIT 221
LINE 11
LINEAR 294
LINT 122, 126
LLCM 126
LMI 24
LMIN 111
$\ln 8$
$\ln 108$
$\ln 28$
LNPT 16, 38
LNV 250, 252
LO 122
LOCK 13
LOD 122
LORI 65
LP 122, 126
LPIL 122
LPN 126
LPRJ 126
LPS1 219
LPS2 219
LPT 122
LPT1 219
LPT2 219
LPTA 122
LREP 41, 43, 46, 65, 75,

82, 87, 92, 94
LREV 126
LRL 122
LRNV 127
LRNX 126
LRNY 126
LRNZ 126
LROT 122, 127
LS 32, 117
LSCA 122
LSCR 123
LSCZ 123
LSIZE 111
LST 253, 273
LSTL 123
LSYS 24, 25
LT 123
LTAS 123
LTBC 123
LTBO 123
LTMN 178
LTMX 178
LTP 123
LTS 117
LTYPE 163, 214
LV 34, 111
LVC 123
LVI 111
LVS 111
LVT 127
LVTB 127
M 112, 159, 161, 201,
205, 237, 248, 268, 269,
288, 289
MA 66
MASS 27
MAT 23, 25, 142, 170,
178
MATE $13,20,25,42,44$,
46, 66, 82, 92, 94, 174
MATERIAL 38, 79, 80,
81
MATERIAL MAST 32
MATERIAL SLAV 32
MATM 19
MATRIX 137
MATS 19
MATSUM 170
max 8
MAXS 32
MAZE 36
MAZT 25
MB 66
MCOL 112
MDBC 25
MDMP 178
MERGE 32
MESH 207
MEXP 116
MFBC 25
MFTS 294
$\min 8$
MINIMUM 238
MK 99

MK+ 99
MK- 99
MKDS 25
MKI 99
MKI+ 99
MKL 99
MLOC 116
MMASS 112
MMOV 116
MN 112
MOMENTUM 118
MOVE 17, 20, 87
MOVIE 170
MPGS 170
MPLT 112
MPS 268
MRDI 294
MS 66
MSCA 32
MSEL 116
MSIZ 112
MSLAV 207
MSRF 253, 273, 294
MSS 268
MSYS 19
MT 63, 67
MTHI 32
MTI 67
MTV 67
MU 14, 154, 193
MVBC 25
MVMA 171
MX 137
MY 137
MZ 137
N 95, 96, 98, 99, 103, 157,
159, 196, 201, 237
$\mathrm{N}+99$
N- 99
N1 63, 79, 80, 81
N2 63, 79, 80, 81
N3 79, 80, 81
N4 80, 81
N5 81
N6 81
N7 81
N8 81
NASTRAN 45
NBEI 254, 273, 294
NBSR 254, 273, 295
NC 21
NCAD 112
NCFORCE 170
NCPU 171
NCRM 112
NCV 112, 130
NCYCLES 170
NDIV 29
NDPLT 112
NE 34
NEIG 254, 274
NEWC 171
NEXP 116, 229
NFAIL 32

NFG 25, 99, 170
NFGI 99
NGEN 63
NI+ 99
NI- 99
NIBSR 254, 274, 295
NIP 25
NIP1 254, 274, 295
NIP2 254, 274
NK2D 25
NK3D 26
NO 64
NODE 23, 24
NODES 78, 79, 80, 81
NODOUT 170
NOFRAME 112
NOGRID 112
NOMERGE 32
NONLINEAR 295
NOPL 26
NOTE 26
NPB 99
NPLOT 163, 214
NPTS 148, 149, 155, 162,
168, 174, 187, 188, 194,
203, 211, 213, 227, 236,
250, 252, 259, 261, 262,
266, 269, 281, 283, 284,
287, 289, 292, 299, 300
NRB 99
NRBI 99
NRCYCK 169
NSAD 112
NSET 112
NSF 130
NSFN 130
NSMD 254, 274
NSMO 26
NSRM 112
NSSD 295
NSTEP 172, 254, 274
NSV 112
NSWS 32
NTIME 117
NUMBER 78, 79, 80, 81
NURB 29
NV 34
OFFSET 173
OLAB 117
OLD 36, 77
OMEGA 242
OPIFS 172
OR 67
ORDER 67
ORIE 173
ORV 26, 99, 103
OSCL 117
OSET 117
OUTSIDE 20
OVERLAY 112
OVERRIDE 27
P 95, 96, 98, 100, 103,
112, 149, 155, 162, 188,
194, 203, 284

P0 14, 230
P1 63, 127
P2 63, 127
P3 127
PA 68, 230
PARAM 227
PART 85
PASS 172
PATRAN 43
PAUSE 26
PB 68, 230
PC $149,154,155,157$,
159, 188, 193, 194, 196,
201, 230, 250, 252, 262,
284
PCHK 112
PCJ 153, 192
PCOL 113
PD 36
PE 14, 15
PER 162, 203
PERCENT 172
PEXP 116
PEXT 15
PFOLD 113
PHASE 295
PHI 230
PHIF 19
PHIS 19
PINF 113
PINI 15
PINT 15, 127
PJ 21
PL3 130
PLAN 131
PLANE 11, 24, 26, 27,
179, 207
PLOC 116
PLTI 140, 172
PM 100
PMASS 113
PMOV 116
PNLM 32
PNLS 32
PNLT 20, 21, 32
PO 64, 96, 97, 99, 127
POFF 103
POINT 16, 38
POLY 131
PON 103
POOR 113
PPLV 28
PPOP 16
PPRJ 127
PR 100, 131, 143, 146,
148, 149, 161, 162, 181,
185, 187, 188, 198, 199,
203, 204, 205, 206, 207,
213, 215, 217, 218, 219,
220, 222, 225, 226, 228,
229, 236, 237, 256, 259,
261, 262, 268, 269, 277, 281, 283, 284, 288, 289, 290, 291

PRBA 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
PRCA 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
PRCB 144, 182, 208, 209,
211, 223, 231, 234, 257,
265, 278, 292
PRE 102
PRELOAD 12
PRETENSIONER 12
PRI 100
PRINT 28, 113
PRISM 27
PRL 100
PROD 24
PROJ 18
PRTI 140, 172
PSCA 13
PSCALE 28
PSEL 116
PSIF 19
PSIG 144, 257, 265
PSIS 19
PSLV 28
PSOPT 174
PSPO 172
PSRGB 113
PT 250, 252
PTOL 113
PULL 12
PV 113
PVS 113
PYROTECHNIC 12
QUAD 20, 28
QUADRATURE 178
QUIT 113
R 113, 159, 163, 201, 214,
219, 226
R1 242
R1E 248
R1P 248
R2 242
R2D 172
R2E 248
R2P 248
RA 96
RADI 295
RADIUS 32
RANG 139, 167
RATE 13
RAYD 178
RB 100
RBAND 295
RBI 100
RBMG 28
RBN 101
RBOUT 170
RC 21
RCFORC 170
RCTOL 295
RDENERGY 172
RDMT 140, 172

RDSI 140, 172
RE 101
RE +101
RE- 101
READ 29
RECT 133
REDUCE 82, 113
REFP 113
REGION 36
REIN 172
RELAX 295
RELAX1 170
RELAX2 170
RELAX3 170
RELAX4 170
REP 117
REPE 21, 24, 42, 44, 46,
$68,75,82,87,92,94,137$
REPO 179
RES 68, 87
RESO 113
REST 68, 113, 140, 172
RETR 12, 13
RETRACTOR 12
REVERSE 13
REZO 140
RFTS 254, 274
RHO 14, 15
RHVC 140, 172
RIRDMS 172
RJ 21
RLBV 140, 173
RLN 123
RLNS 123
RLX 113
RLY 113
RLZ 113
RM 113
RMN 113
rnd 8
rnd2 8
RNUM 140, 173
RO 96, 97, 99, 142, 179,
238, 297, 298, 299, 300
ROTA 34, 42, 44, 46, 75,
82, 87, 92, 94
ROTATION 29, 68
RP 114, 144, 257, 265
RPLT 140, 173
RPRT 140, 173
RQBV 140, 173
RR 68
RTERM 141, 173
RTSF 141, 173
RVBC 29
RWFORC 170
RWPNAL 173
RX 114, 137
RXN 101
RXNI 101
RXY 137
RY 114, 137
RYZ 137
RZ 114, 137

RZX 137	SII- 102	SYG 222
S 117	SIJ 60	SYMM 28
S1 244	$\sin 8$	SYNTAX 36
S2 244	SINGLE 32	SYSD 174
S3 244	sinh 8	SYSEND 37
SA 157, 196, 244	SINT 127	SYSJ 103
SAREA 179	SIOPT 173	SYSTEM 37, 104, 179,
sas 8	SIZE 114	207
SAVE 68, 137	SJ 21	T 78, 114, 163, 214, 228,
SBC 295	SJK 60	229, 269, 289
SBI 101	SKI 60	T0 248
SBRF 141, 173, 254, 274,	SL 32, 102	T1 131
295	SLIPRING 12	T10 32
SC 63, 101, 185, 205, 209,	SLOC 179	T11 33
225, 231, 234	SLVM 35	T12 33, 37
SC03 29	SO 64	T13 33, 37
SCAL 14, 15, 103	SOFT 231, 234	T14 33
SCALE 114, 137, 291	SOLUTION STEADY	T15 33
SCOL 114	295	T16 33
SD 20, 30, 133	SOLUTION	T17 33
SDMV 30	TRANSIENT 295	T18 33
SEAL 114	SP 131, 185, 205, 225,	T19 33
SEAL CIRCLE 114	244	T2 131
SEAL OFF 114	SPACE 38	T20 33
SEAL OUTLINE 114	SPALL 157, 196	$\tan 8$
SECFORCE 170	SPC 102	$\tanh 8$
SECTION 28, 79	SPCFORC 170	TAURUS 117, 174
SEGMENT 179	SPCI 102	TBI 33
SENSOR 12, 13	SPD 34	TBO 139, 167
SEPARATE 175	SPDP 103	TCO 34
SEQUENTIAL 173	SPHE 24, 27, 42, 44, 46,	TCRS 33
SETS 32	70, 75, 83, 92, 94, 133	TCRV 206
SF 69, 234	SPIN 87	TCYCLE 175
SFAIL 32	SPRING 12, 13	TDEL 206, 213
SFC 102	SR 234	TEMP 37, 42, 44, 46, 70,
SFE 69	SRUL 174	76, 83, 87, 92, 94, 148,
SFEI 69	SSCA 32	187, 261, 266, 283, 287,
SFI 69	SSIT 254, 274	299, 300
SFORM 179	SSO 255, 274	TENSION 233
SFS1 219	SSOO 255, 274	TEO 141, 175, 255
SFS2 219	sss 8	TERM 141, 175, 255, 275,
SFSI 141, 173	SSYS 19	295
SFT1 219	STACK 87	TFAIL 231, 234
SFT2 219	STANDARD 36	TGC 297, 298, 299, 300
SFV 69	START 56, 170	TGM 297, 298, 299, 300
SFVI 69	STEP 295	TH 104
SHELL 179	STHI 32	THEF 20
SHELLS 80	STHICK 179	THES 20
SHIFT 254, 274	STOL 35	THETA 163, 214
SHRINK 114	STONE 28	THI 104
SI 31, 102, 117	STOP 35, 114, 170	THIC 37, 42, 44, 46, 70,
SI +102	STOPA+19	83, 92, 94
SI- 102	STOPA-19	THICK 87
SIDB 170	STOPB+19	THICKNESS 80
SIGF 162, 203	STOPB-19	THIN 174
SIGM 157, 196	STOPC+20	TIED 33
SIGO 157, 196	STOPC-20	TIME 12, 13, 16, 38
SIGY 146, 148, 155, 162,	STYP 174	TIMIN 295
185, 187, 194, 198, 199,	SUPP 168	TIN 14, 15
203, 204, 206, 213, 215,	SV 32	TIND 37
218, 220, 225, 226, 259,	SW 103	TINE 37
261, 281, 283	SWENERGY 174	TINT 175
SII 102	SWFORC 171	TINV 141, 175
SII+ 102	SWI 103	TIVE 37

TJ 21
TLHA 297, 298, 299, 300
TLOC 179
TM 104, 159, 201
TMASS 114
TMCG 37
TMI 104
TMM 37
TMSM 37
TMVP 38
TN 104
TNI 104
TO 157, 159, 196, 201
TOFF 11
TOTAL 118
TP 114
TRACER 38
TRACER t Tracer
particle file..i.Tracer
Particles 171
TRANS 38
TRI2 70, 87
TRIA 70, 88, 133
TRIAD 114
TRPT 114
TS 131
TS2P 131
TSF 223
TSHELL 179
TSLIMIT 175
TSORT 175
TSSF 175
TSSFDR 169
TSTEP 168
TTHICK 179
TTIME 115
TUPD 175
TV 115
TYPE 13, 142, 180
TZ2D 38
TZ3D 38
U 115
UDEF 117
UJ 21
UL 188, 262, 284
ULD 188
UNLOAD 233
UPDATE 115
V 137
V0 241, 242, 243, 244,
245, 247, 250, 252
V1 182, 208, 210, 212,
224, 227, 232, 235, 278,
293
V2 64, 182, 208, 210, 212,
224, 227, 232, 235, 278,
293
V3 182, 208, 210, 212,
224, 227, 232, 235, 278,
293
V90 176
V91 176
V92 176
V93 176

VARIABLE 171
VC 236
VD 38
VDA 207
VE 34, 104
VEC 176
VEC92 176
VECDYNA 93
VECTOR 26
VELO 11, 42, 44, 46, 76,
83, 88, 92, 94
VELOCITY 27, 39, 70
VEOS 115
VF 215
VFRI 33
VIEW 115
VINI 14
VO 64
VOLT 15
VS 149, 188, 262, 284
VSCA 14
VTSP 70
VVEC 207, 291
WARP 176
WBGR 115
WBIF 115
WECE 248
WEDGE 176
WPCP 248
WRDB 115
WRITE 38
WTDB 115
X 13, 78, 248
X0 163, 214
XBO 139, 167
XF 17
XLE 17
XOFF 38
XP 182, 208, 210, 212,
216, 224, 227, 232, 235,
278, 293
XSCA 38, 137
XSYM 18
XT 209, 231, 234
XVEL 118
Y 13, 78, 248
YBO 139, 167
YC 209, 231, 234
YF 17
YLD 139, 167
YLE 17
YOFF 39
YP 182, 208, 210, 212,
216, 224, 227, 232, 235,
278, 293
YSCA 39, 137
YSYM 18
YT 209, 231, 234
YVEL 118
Z 13, 78, 248
ZBO 139, 167
ZF 17
ZIN 115
ZLE 17

ZOFF 39
ZOUT 115
ZP 144, 182, 208, 210,
212, 216, 224, 227, 232,
235, 257, 265, 278, 293
ZSCA 39, 137
ZSYM 18
ZVEL 118
Component Interface
Defining 98
Composite
Angles 177
Damage Model 231
Plasticity Based Damage 234
Contact Interface Defining 31
Displaying 110
DYNA3D Options 173
Eroding 33, 171
Geometric 20
Rigid Wall 27
Segment Selection 102
Slave Nodes 102
Control Volume
Defining 96
Definition 13
Displaying 107
Convection Boundary
Condition
Applying 97
Displaying 108
Convergence Tolerance TOPAZ 294
Coordinate transformations 16
Copying Part 24
Creep
DYNA3D 237
NIKE2D 266
NIKE3D 287
Cross Section Displaying 107
Crushable Foam DYNA3D 188, 200
NIKE2D 262
NIKE3D 284
Cyclic Symmetry
Defining 16, 96
Displaying 107
Cylindrical Joint 21
Damper 34
Defining 103
Displaying 110
Damping Material 178
Density
DYNA3D 179
Detonation Point 16
Displaying 108
Digitized Surface
Defining 17
Displaying 111
Saving 25
Directives 9

Discrete Mass
Defining 100
Displacement Boundary
Condition
Applying 97
Displaying 108
Rigid Body 25
Displacement Convergence
Tolerance
NIKE2D 253
NIKE3D 273
Display Options
Color Selection 110
Overlaying 110
Removal 110
Duplicate Node Removal 113, 114
DYNA3D
Airbag Statistics 170
ASCII Output Files 170
Beam Integration Rule 167
Brode Function 167
Bulk Viscosity 168, 169
CAL3D Coupling 168
Centrifugal Load 171
Comments 26
Contact Penalty 173
D3HSP 168
Damping 174
Dynamic Relaxation 169
Full Restart 170
Gravity Load 171
Hourglass Control 169
Hourglass Energy 171
Importing Files 93
Initial Time Step 171
MADYMO Coupling 168
Mass Scaling 169, 172
Maximum Time Step 171
Minimum Time Step 175
Output Control 168
Parallel Processing 172
Plane Stress Plasticity
Option 172
Rayleigh Damping 179
Rayleigh Damping Energy
Dissipation 172
Restart 173
Rigid Wall Penalty 173
Shell Formulation 174
Shell Integration Rule 174
Shell Thickness Updates

## 175

Stone Wall Energy
Dissipation 174
System Damping 171
TAURUS Database Save
Interval 172
Termination Cycle 175
Termination Time 175
Time Step 169
Time Step Scale Factor 175

Eigenvalue Extraction
NIKE2D 254
NIKE3D 274
Elastic Material DYNA3D 181
Elasticity NIKE2D 256
Element Delete on Restart Displaying 108
Element Number
Displaying 111
Shifting 23
Element Print Block Defining 97 Displaying 108
Element Shrink Plots 114
Emmisivity Curves TOPAZ 295
Energy Convergence
Tolerance
NIKE2D 253
NIKE3D 273
Equation-of-State
Gruneisen 244
Ignition and Growth of
Reaction 248
JWL 242
Linear Polynomial 241
Linear Polynomial with
Energy Leak 247
Ratio of Polynomials 245
Sack Tuesday High
Explosive 243
Tabulated 252
Tabulated Compaction 250
Equipotential Relaxation 170
Eulerian Formulation DYNA3D 170
Explosive
JWL Burn Model 242
Material 192
Reactive Burn Model 249
Sack Burn Model 243
Failing Symmetry Plane
Defining 20
Displaying 108
Failure
Tied Nodal Group 97
Fixed Nodes Displaying 108
Flexion-Torsion Joint
Defining 19
Fluid DYNA3D 169
Flux Boundary Condition Applying 97
Displaying 108
Foam 233
Folding 20
Force Load
Applying 97
Displaying 108
Frazer-Nash Rubber

NIKE2D 270
Free-Form Surface 17
Friction Reduction Factor NIKE2D 254
Geological Cap Model 214
Geological Material DYNA3D 203
Geometric Contact 20 Identifying Slave Nodes 98
Geometric Stiffness NIKE2D 253
NIKE3D 273
Graphics
Device Selection 115
Gravity Load DYNA2D 140
DYNA3D 171, 178
NIKE2D 253
NIKE3D 273
Heat Conduction
TOPAZ 297, 299
Heat Flux
TOPAZ 294
Hourglass Energy 171
Hourglass Control DYNA3D 177
Hughes-Liu Beam DYNA3D 177
Hughes-Liu Shell DYNA3D 179
Importing DYNA3D Files 93
NASTRAN Files 45 PATRAN Files 43 SDRC Files 41
Include File 21 Directory 16
Initial Time Step TOPAZ 295
Interactive Model Updates 115
Intrinsic functions 8
Isoparametric Relaxation 170
Johnson/Cook Material DYNA3D 201
Joint
Defining 21, 98 Displaying 108
Joints 170
JOY Interface Node Defining 98 Displaying 108
Kikuchi Relaxation 170
Line Definition Displaying 111
Three-dimensional 23
Two-dimensional 23
Line Search Tolerance
NIKE2D 253
NIKE3D 273
LLNL-INGRID Compatibility
36
Load Curve 23

Displaying 111
Local Axes
Displaying 108
Specifying 67
Local System
Defining 24
LS-DYNA2D 16
LS-DYNA3D 16
LS-DYNA3D Version 902176
LS-DYNA3D Version 910176
LS-DYNA3D Version 920176
LS-DYNA3D Version 930176
LS-NIKE3D 26
MADYMO3D 20, 179
Repositioning Materials
35
Unit Conversions In
Coupling 168
Marked Surface
Defining 99
Displaying 109
Mass Property
Displaying 109, 112
Input 37
Material Subset 112
Part Subset 113
Total 114
Mass Scaling
DYNA3D 172
Masses 109
Material
Data Input 25
Display 107
Displaying 110, 112, 113
Heading 177
Highlighting 109
Increments 21
Label Increment 24
Maximum Time Step
NIKE2D 253
TOPAZ 294
Maze Part
Tolerance 25
Membrane
DYNA3D 179
Metallic Honeycomb 215
Minimum Time Step
NIKE2D 253
TOPAZ 294
Mooney-Rivlin Rubber
NIKE3D 290
MOVIE.BYU
DYNA3D 170
MPGS
DYNA3D 170
MVMA-DYNA3D 171
NASTRAN
Importing Files 45
Newmark Integration
Parameters
NIKE2D 254
NIKE3D 274
TOPAZ 295
NIKE2D 25

NIKE3D 273
Nodal Constraint 21
Defining 98
Nodal Force Group
Defining 25
Displaying 109 Specifying 99
Nodal Print Block
Defining 99
Displaying 109
Nodal Rigid Body
Defining 101
Displaying 109
Node Number
Displaying 112
Shifting 23
Nodes Slave To Rigid Body
Displaying 109
Non-Reflecting Boundary
Condition
Displaying 109
Specifying 99
Null Material DYNA3D 193
Number of Time Steps NIKE2D 254
NURB Curve
Displaying 109, 112
NURB Surface 29
Displaying 109, 112
Orientation
Arrow Display 107
Orientation Vector Displaying 109 Specifying 99
Orientation Vectors 26
Orthotropic Elastic NIKE2D 257, 265 NIKE3D 278
Orthotropic Elastic Material DYNA3D 182
Orthotropic Heat Conduction TOPAZ 298, 300
Orthotropic Shell Local Axes 65
Parallel Processing DYNA3D 171, 172
Parametric surface 18
Part
Copying 24
Displaying 114
Highlighting 109
PATRAN
Importing Files 43
Pause Operation 26
Phase Change TOPAZ 295
Planar Joint 21
Plane Strain
NIKE2D 253
Plane Stress
NIKE2D 253
Plastic Hydrodynamic Material 194

Plastic Material
DYNA3D 185, 198, 199,
204, 205
Plasticity
NIKE2D 259
NIKE3D 281
Plot Interval
NIKE2D 253
NIKE3D 273
TOPAZ 294
Power Law Plasticity NIKE2D 268 NIKE3D 288
Pressure Load Applying 100
Arrival Time 11
Displaying 109
Pretensioner 12
Print Interval
TOPAZ 294
Printing
Calculator Result 28
Quadratic Element 28
Radiation
TOPAZ 295
Radiation Boundary Condition
Applying 100
Displaying 109
Radiation Enclosure
Defining 101
Displaying 109
Radiosity Convergence
Tolerance
TOPAZ 295
Rayleigh Damping
DYNA3D 179
Energy Dissipation 172
Reaction Force
DYNA3D 170
Reinforced Concrete 32
Restart
DYNA3D 170, 172, 173
Element Deletion 97
NIKE2D 254
TOPAZ 295
Resultant Force Cross Section Defining 96
Retractor 12
Defining 96
Revolute Joint 21
Rigid Body
Center Of Gravity 37
Displacement Boundary
Condition 25
Extra Node 101
Inertia 37
Initial Velocity 37
Merging 28
Moving Properties 38
NIKE3D 291
Total Mass 37
Velocity Boundary
Condition 25, 29
Rigid Material

DYNA3D 207
Rigid Wall 27
Rotational Velocity
Initial 75, 83, 87
Rubber
DYNA3D 191
SALE Advection 169
Scaling coordinates 16
Screen Movement
Left 107, 111
Restoring Original View
113
Right 113
Rotation 113, 114
Scaling 114
SDRC Ideas 41
Seat Belt 12
Defining 96
Displaying 107
Seat Belts 170
Section Property
Scaling 28
Sensor 12
Defining 96
Shell
Displaying Free Edge 109
Displaying Normal
Vectors 109
Displaying Warpage 110
Formulation 179
Integration Rule 178
Orientation 99
Property Numbers 104
Quadrature 178
Reference Fiber 179
Thicknesses 70, 104
Triangular 70, 88
User Integration Rule 178
Shell/Brick Interface
Displaying 109
Shift Frequency
NIKE2D 254
Single Point Constraint
Applying 95, 103
Displaying 110
Slide Line
Applying 102
Displaying 110
Sliding Interface
Applying 102
Defining 31
Displaying 110
DYNA3D Options 173
Insertion Tolerance 254, 274
Slipring 12
Defining 96
SMUG 170
Soil
NIKE2D 262
NIKE3D 284
Solution Method
NIKE2D 253

Spherical Joint 21
Spotweld 21
Spring 34
Defining 103
Displaying 110
Standard Part
Mesh Smoothing 63
Steady State Solution
TOPAZ 295
Steinberg Material
DYNA3D 196
Stone Wall 27
Displaying 110
Energy Dissipation 174
Identifying Slave Nodes 103
Substructure Interface
Displaying 108
Surface
Applying To Mesh 69
Definition 30
Digitized 17
NURB 29
Smoothing 26
Symmetry Plane 27
Displaying 110
Failing 20
System Assembly
Joint Definition 103
System Name 37
Viewing Assembly Points
110
Viewing Systems 114
System Damping
Control volume 13
DYNA3D 171, 174
TAURUS
Creating Database From
INGRID 115
Temperature Boundary
Condition
Applying 98
Displaying 110
Temperature Initial Condition
$37,42,44,46,70,76,83,87$,
92, 94
Displaying 110
Termination Time
NIKE2D 255
TOPAZ 295
Thermal Effect
DYNA2D 141
DYNA3D 175
NIKE2D 255
NIKE3D 275
Thermo-Plastic Material
DYNA3D 187
Thermo-Plasticity
NIKE2D 261, 269
NIKE3D 283, 289
Thick Shell
DYNA3D 179
Local-t 178

Thickness
Shell 37
Three-Dimensional Line
Definition
Displaying 108
Time Step
NIKE2D 253
NIKE3D 273
TOPAZ 294
Tolerance
MAZE Part 25
Surface Intersections 35
Tool Path
Displaying 109
TOPAZ Materials
Isotropic 297
Isotropic Temperature
Dependent 299
Orthotropic 298
Orthotropic Temperature
Dependent 300
TOPAZ2D 38, 294
TOPAZ3D 38, 294
Tracer Particles 38, 107
Tracer ParticlesDisplaying 110
Transient Solution
TOPAZ 295
Translational Joint 21
Triad
Plotting 114
Truss Element
DYNA3D 177
Unit Systems
TOPAZ 294
Universal Joint 21
Van Leer Advection 169
VEC-DYNA3D 176
Vector
Displaying 110
Velocity
Initial 39, 42, 44, 46, 70, 76, 88, 92, 94
Velocity Boundary Condition
Applying 98
Displaying 110
Rigid Body 25, 29
View Factor
Non-interacting Materials 25
Visco-Plastic Material DYNA3D 206
Viscoelasticity
DYNA3D 190, 236
NIKE3D 286
Volume Definition 39
Wang-Nefske Inflator Model
14
Warpage of Shell
Displaying 110
YASE Shell
DYNA3D 179

