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Mathematical Preliminaries
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Vector Space (or Linear Space): A vector space (V, F)
consists of a set (of vectors) V, a field (of scalars) F and two
operations viz. addition of vectors (+) and multiplication of
vectors by scalars (·), which obey the following axioms:

1. Addition is given by
+ : V × V → V : (x + y) → x + y; It is

Associative:
(x + y) + z = x + (y + z), ∀x, y, z ∈ V
Commutative: x + y = y + x, ∀x, y ∈ V
∃! identity 0, (called the zero vector), s.t.
x + 0 = 0 + x = x, ∀x ∈ V
∃! inverse: ∀x ∈ V, ∃!(−x) ∈ V s.t.
x + (−x) = 0;
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2. Multiplication by scalars is given by
· : F × V → V(α, x) → αx, where ∀x ∈ V and
∀α, β ∈ F,

(αβ)x = α(βx)

1x = x, 0x = 0;

3. Addition and multiplication by scalars are related by
distributed laws viz.

∀x ∈ V, ∀α, β ∈ F (α + β)x = αx + βx

∀x, y ∈ V, ∀α ∈ F α(x + y) = αx + αy.

Subspace: Let W be a subset of V. If W is a vector space
itself, with the same vector space operations as V has, then
it is a subspace of V.
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Inner Product Space: A vector space (V, F) is an inner
product space if there is a function 〈·, ·〉 : V × V 7→ F such
that for every x, y, z ∈ V and α ∈ F the following hold:

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
〈x, y + z〉 = 〈x, y〉 + 〈x, z〉
〈x, αy〉 = α〈x, y〉 ∀α ∈ F

‖x‖2 = 〈x, x〉 ≥ 0

〈x, x〉 = 0 if and only x = 0.

〈x, y〉 = 〈y, x〉, where the overbar denotes the
complex conjugate operator.

The function 〈·, ·〉 is called the inner product on V.
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The supremum or least upper bound (LUB) of a set S of
real numbers is denoted by sup(S) and is defined to be the
smallest real number that is greater than or equal to every
number in S. Every nonempty subset of the set of real
numbers that is bounded above has a supremum that is
also an element of the set of real numbers.
sup{x ∈ R : 0 < x < 1} = sup{x ∈ R : 0 ≤ x ≤ 1} = 1.

The infimum or greatest lower bound (GLB) of a set S of
real numbers is denoted by inf(S) and is defined to be the
biggest real number that is smaller than or equal to every
number in S. Any bounded nonempty subset of the real
numbers has an infimum in the non-extended real numbers.
inf{x ∈ R : 0 < x < 1} = 0.
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Vector Norms: Let X be a vector space, a real-valued
function ‖ · ‖ defined on X is said to be a norm on X if it
satisfies the following properties:

‖x‖ ≥ 0 (positivity) ;

‖x‖ = 0 if and only if x = 0 (positive definiteness) ;

‖αx‖ = |α|‖x‖, for any scalar α (homogeneity) ;

‖x + y‖ 6= ‖x‖ + ‖y‖ (triangle inequality) for any
x ∈ X and y ∈ X .
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Finite-dimensional Vector p-norm: Let x ∈ R
n. Then we

define the vector p-norm of x as

‖x‖p :=

( n
∑

i=1

|xi|p
)1/p

for 1 ≤ p ≤ ∞.

In particular, when p = 1, 2, ∞, we have

‖x‖1 :=
n
∑

i=1

|xi|; ‖x‖2 :=

√

√

√

√

n
∑

i=1

|xi|2

‖x‖∞ := max
1≤i≤n

|xi|
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Equivalence between p-norms: All p-norms are equivalent
in the sense that if ‖ · ‖α and ‖ · ‖β are two different
p-norms, then there exist positive constants c1 and c2 such
that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α

for all x ∈ R
n.

For the 1−, 2−, and ∞−norms, we have

‖x‖2 ≤ ‖x‖1 ≤ √
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
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Hölder Inequality: For all x ∈ R
n, y ∈ R

n,

|xT y| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1.

For p = q = 2, Hölder’s inequality results in the
Cauchy-Schwarz inequality.
For Lp spaces with f ∈ Lp, g ∈ Lq and 1

p + 1
q = 1:

∫

|f(t)g(t)|dt ≤
(
∫

|f(t)|pdt

)1/p (∫

|g(t)|qdt

)1/q

.
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Matrix Induced Norms: Let A = [aij] ∈ R
m×n, then the

matrix norm induced by a vector p-norm is defined as

‖A‖p := sup
x 6=0

‖Ax‖p

‖x‖p
= max

‖x‖p=1
‖Ax‖p

The induced matrix 2-norm

‖A‖2 =
√

λmax(AT A)
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The induced matrix 1-norm

‖A‖1 = max
j

m
∑

i=1

|aij |

The induced matrix ∞-norm

‖A‖∞ = max
i

n
∑

j=1

|aij|

Frobenius norm (not an induced norm)

‖A‖F :=
√

traceAT A =
√

∑m
i=1

∑n
j=1 |aij|2.
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Facts of Matrix Norms: Let A ∈ R
m×n and B ∈ R

n×l,
given unitary matrices U ∈ R

m×m and V ∈ R
n×n, i.e.,

UT U = Im, V T V = In, we have

1√
n
‖A‖∞ ≤ ‖A‖2 ≤ √

m‖A‖∞
1√
m

‖A‖1 ≤ ‖A‖2 ≤ √
n‖A‖1

‖UAV ‖2 = ‖A‖2

‖A‖p < 1, then det(I − A) 6= 0

‖A‖2 ≤
√

‖A‖1‖A‖∞
‖AB‖p ≤ ‖A‖p‖B‖p

‖A1 + A2‖p ≤ ‖A1‖p + ‖A2‖p
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Proof of 1√
n
‖A‖∞ ≤ ‖A‖2 ≤ √

m‖A‖∞

‖A‖2 := sup
x 6=0

‖Ax‖2

‖x‖2
= max

‖x‖2=1
‖Ax‖2

‖Ax‖∞ ≤ ‖Ax‖2 ≤
√

m‖Ax‖∞

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞

sup
x 6=0

‖Ax‖∞√
n‖x‖∞

≤ ‖A‖2 ≤ sup
x 6=0

√
m‖Ax‖∞
‖x‖∞

⇒
1

√
n

‖A‖∞ ≤ ‖A‖2 ≤
√

m‖A‖∞
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Proof of 1√
m

‖A‖1 ≤ ‖A‖2 ≤ √
n‖A‖1

‖A‖2 := sup
x 6=0

‖Ax‖2

‖x‖2
= max

‖x‖2=1
‖Ax‖2

‖Ax‖2 ≤ ‖Ax‖1 ≤
√

m‖Ax‖2

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2

sup
x 6=0

‖Ax‖1√
m‖x‖1

≤ ‖A‖2 ≤ sup
x 6=0

√
n‖Ax‖1

‖x‖1

⇒
1

√
m

‖A‖1 ≤ ‖A‖2 ≤
√

n‖A‖1
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Proof of ‖UAV ‖2 = ‖A‖2

UT U = Im; V T V = In

‖UAx‖2
2 = xT AT UT UAx = xT AT Ax = ‖Ax‖2

2

⇒‖UA‖2 = max
‖x‖2=1

‖UAx‖2 = max
‖x‖2=1

‖Ax‖2 = ‖A‖2

⇒‖AV ‖2 = ‖V T AT ‖2 = ‖AT ‖2 = ‖A‖2

⇒‖UAV ‖2 = ‖A‖2
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Proof of ‖A‖2 ≤
√

‖A‖1‖A‖∞

‖A‖2
2 = λmax(AT A) ⇒ AT Ax = ‖A‖2

2x

‖A‖2
2‖x‖1 = ‖AT Ax‖1

≤ ‖AT ‖1‖A‖1‖x‖1

= ‖A‖∞‖A‖1‖x‖1

⇒ ‖A‖2 ≤
√

‖A‖1‖A‖∞
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Proof of ‖AB‖p ≤ ‖A‖p‖B‖p

‖AB‖p = sup
x 6=0

‖ABx‖p

‖x‖p

= sup
x,Bx 6=0

‖A(Bx)‖p

‖Bx‖p

‖Bx‖p

‖x‖p

≤ sup
y 6=0

‖Ay‖p

‖y‖p
· sup

x 6=0

‖Bx)‖p

‖x‖p

= ‖A‖p‖B‖p

⇒‖AB‖p ≤ ‖A‖p‖B‖p
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Proof of ‖A1 + A2‖p ≤ ‖A1‖p + ‖A2‖p

‖A1 + A2‖p = max
‖x‖p=1

‖(A1 + A2)x‖p

= max
‖x‖p=1

‖A1x + A2x‖p

≤ max
‖x‖p=1

(‖A1x‖ + ‖A2x‖p)

≤ max
‖x‖p=1

‖A1x‖p + max
‖x‖p=1

‖A2x‖p

= ‖A1‖p + ‖A2‖p

⇒‖A1 + A2‖p ≤ ‖A1‖p + ‖A2‖p
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Eigenvalues: Roots of the characteristic polynomial
det(λIn − A), where A ∈ R

n×n.
Repeated Eigenvalues: The number of linearly independent
eigenvectors qi associated with an eigenvalue λi repeated
with an algebraic multiplicity mi is equal to the nullity of
(λiIn − A). This dimension is given by
qi = n − rank(λiIn − A) and is called the geometric
multiplicity of λi, since it is the dimension of the subspace
spanned by the eigenvectors.
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Hermitian Matrix: A Hermitian matrix H ∈ C
n×n (or

self-adjoint matrix) is a square matrix with complex entries
which is equal to its own conjugate transpose, i.e.,
H = H∗. If H ∈ R

n×n, then H is symmetrical. Facts are:

All the eigenvalues of a hermitian matrix H are real.

The Jordan from representation of a hermitian matrix is
diagonal.

The eigenvectors of a hermitian matrix corresponding
to different eigenvalues are orthogonal.

Let λmin and λmax be the smallest and largest
eigenvalues of a hermitian matrix P . Then we have
λmin‖x‖2

2 ≤ x∗Px ≤ λmax‖x‖2
2 for any x ∈ C

n.
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Positive Definite Matrix: A Hermitian matrix P ∈ C
n×n is

positive definite (positive semidefinite) if and only if any one
of the following conditions holds:

All the eigenvlaues of P are positive (nonnegative).

All the leading principle minors of P are positive (all
the principal minors of P are nonnegative).

There exists a nonsingular matrix N (a singular matrix
N ) such that P = N∗N.
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Topological Concepts in R
n

Convergence: A sequence {xk} ∈ R
n,converges to

x ∈ R
n if

‖xk − x‖ → 0 as k → ∞,

which is equivalent to saying that, ∀ε > 0, ∃N ∈ N such
that

‖xk − x‖ < ε, ∀k ≥ N.

Open Set: A set S ⊂ R
n is open if, for every vector x ∈ S,

one can find an ε−neighborhood of x
N(x, ε) = {z ∈ R

n | ‖z − x‖ < ε} such that N(x, ε) ⊂ S.

Closed Set: A set S ⊂ R
n is closed if and only if its

complement in R
n is open. S is closed if and only if every

convergent sequence with elements in S has its limit in S.
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Boundedness: A set S is bounded if there is r > 0 such
that ‖x‖ ≤ r for all x ∈ S.
Compact: A set S is compact if it is closed and bounded.
Boundary: A point p is a boundary point of a set S if every
neighborhood of p contains at least one point of S and one
point not belonging to S. The set of all boundary points of
S, denoted by ∂S, is called the boundary of S. A closed set
contains all its boundary points. An open set contains none
of its boundary points.
Interior: The interior of a set S is S \ ∂S.
Closure: The closure of a set S, denoted by S, is the union
of S and its boundary. A closed set is equal to its closure.
Connected: An open set S is connected if every pair of
points in S can be joined by an arc lying in S.
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Region: A set S is called a region if it is the union of an
open connected set with some, none, or all of its boundary
points. If none of boundary points are included, the region
is called an open region or domain.
Convex: A set S is convex if, for every x, y ∈ S and every
real number θ, 0 < θ < 1, the point θx + (1 − θ)y ∈ S.
Continuous Functions: A function f : R

n → R
m is said to

be continuous at a point x if, given ε > 0, ∃δ > 0 such that

‖x − y‖ < δ ⇒ ‖f(x) − f(y)‖ < ε.

A function f is continuous on a set S if it is continuous at
every point of S, and it is uniformly continuous on S if, given
ε > 0 there is δ > 0 (depending only on ε) such that the
inequality holds for all x, y ∈ S.
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If f is uniformly continuous on a set S, then it is continuous
on S. The converse is not true in general. However if S is a
compact set, then continuity and uniform continuity on S
are equivalent.
The linear combination of any two continuous functions is
continuous. The composition of two continuous functions f1

and f2, i.e., (f2 ◦ f1)(·) = f2(f1(·)) is continuous.
Image: If f : S → R

m, then the set of f(x) such that x ∈ S
is called the image of S under f and is denoted by f(S).
If f is a continuous function defined on a compact set S,
then f(S) is compact; hence, continuous functions on
compact sets are bounded.
If f : S → R, then there are points p and q in the compact
set S such that f(p) ≤ f(x) ≤ f(q) for all x ∈ S.
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If is a continuous function defined on a connected set S,
then f(S) is connected.
A function f defined on a set S is said to be one to one on
S if whenever x, y ∈ S, and x 6= y, then f(x) 6= f(y). If
f : S → R

m is a continuous one-to-one function on a
compact set s ⊂ R

n, then f has a continuous inverse f−1

on f(S), i.e., f−1(f(x)) = x.
A function f : R → R

n is said to be piecewise continuous
on an interval J ⊂ R if for every bounded subinterval
J0 ⊂ J , f is continuous for all x ∈ J0, except, possibly, at a
finite number of points where f may have discontinuities.
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Implicit Function Theorem: Assume that
f : R

n × R
m → R

n is continuously differentiable a at
each point (x, y) of an open set S ⊂ R

n × R
m. Let (x0, y0)

be a point in S for which f(x0, y0) = 0 and for which the
Jacobian matrix [∂f/∂x](x0, y0) is nonsingular. Then there
exist neighborhood U ⊂ R

n of x0 and V ⊂ R
m of y0 such

that for each y ∈ V the equation f(x, y) = 0 has a unique
solution x ∈ U . Moreover, this solution can be given as
x = g(y), where g is continuously differentiable at y = y0.

aThe partial derivatives exist and are continuous at the suggested point.
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Mean Value Theorem: Assume that f : R
n → R is

continuously differentiable at each point x of an open set
S ⊂ R

n. Let x and y be two points of S such that the line
segment
L(x, y) := {z | z = θx + (1 − θ)y, 0 < θ < 1} ⊂ S. Then
there exists a point z of L(x, y) such that

f(y) − f(x) =
∂f

∂x

∣

∣

∣

x=z
(y − x).
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Taylor’s theorem: If f is an n ∈ N times continuously
differentiable function on [a, x] and n + 1 times
differentiable on (a, x), then

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·

+
f (n)(a)

n!
(x − a)n + Rn,

where the remainder Rn is give by

Rn :=
f (n+1)(z)

(n + 1)!
(x − a)n+1, ∃z ∈ (a, x).

This is a generalization of the mean value theorem.
– p.29/39



Taylor’s series:

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·

=
∞
∑

k=0

f (k)(a)

k!
(x − a)k.

Monotonic Sequence: A sequence {sn} is said to be

monotonically increasing if sn ≤ sn+1, n ∈ N;

monotonically decreasing if sn ≥ sn+1, n ∈ N.
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Theorem: Suppose {sn} is monotonic. Then {sn}
converges if and only if it is bounded.
Proof: Suppose sn ≤ sn+1. Let E be the range of {sn}. If
{sn} is bounded, then ∃s the least upper bound of E. Then
sn ≤ s, ∀n ∈ N. For every ǫ > 0, there is N such that
s − ε < sN ≤ s, otherwise s − ε would be an upper bound
of E. Since {sn} increases, n ≥ N therefore implies
s − ε < sn ≤ s, which shows that {sn} converges to s
(⇐). ⇒ is follows from the fact that if {sn} converges, then
{sn} is bounded.
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Normed Linear Space: A linear space X is a normed linear
space if, to each vector x ∈ X , there is a norm ‖x‖.
Cauchy Sequence: A sequence {xk} ∈ X is said to be a
Cauchy sequence if

‖xk − xm‖ → 0 as k, m → ∞.

Every convergent sequence is Cauchy, but not vice versa.
Banach Space: A normed linear space X is complete if
every Cauchy sequence in X converges to a vector in X . A
complete normed linear space is a Banach space.
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Banach Spaces:
lp[0, ∞) spaces for 1 ≤ p < ∞ : For each p, lp[0, ∞)

consists of all sequences x = (x0, x1, · · · ) such that
∑∞

i=1 |xi|p < ∞. The associated norm is

‖x‖lp
:=

( ∞
∑

i=1

|xi|p
)1/p

.

l∞[0, ∞) space consists of all bounded sequences
x = (x0, x1, · · · ), and the l∞ norm is

‖x‖l∞
:= sup

i
|xi|.
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Banach Spaces:
Lp(I) spaces for 1 ≤ p < ∞ : For each p, Lp(I) consists
of all Lebesgue measurable functions x(t) defined on an
interval I ∈ R such that

‖x‖Lp
:=

(
∫

I
|x(t)|pdt

)1/p

< ∞, for 1 ≤ p < ∞.

and
‖x(t)‖L∞

:= sup
t∈I

|x(t)| < ∞.

C[a, b] space consists of all continuous functions on the
real interval [a, b] with the norm defined as

‖x‖C := sup
t∈[a,b]

|x(t)|.
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Logic and Proofs:
Law of the Excluded Middle: Every statement must be
either true or false.
Logical operators:

Statement Notation
P and Q P ∧ Q

P or Q P ∨ Q

If P , then Q (or P implies Q) P ⇒ Q

P if and only if Q (or P and Q are equivalent) P ⇔ Q

not P ¬P

where P and Q are statements.
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A statement P is a necessary condition of a statement Q if
Q implies P (Q ⇒ P ). A necessary condition P of a
statement Q must be satisfied for the statement Q to be
true.

A statement P is a sufficient condition of a statement Q if P
implies Q (P ⇒ Q). A sufficient condition P is one that, if
satisfied, assures the statement Q’s truth.

A statement P is a necessary and sufficient condition of a
statement Q if P if and only if Q (P ⇔ Q).
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Tautologies: True statements for any cases.

Statement True/False
P ⇒ P True

(P ⇒ Q) ⇔ (¬Q ⇒ ¬P ) (Contrapositive) True
P ∨ ¬P True

P ∧ (P ⇒ Q) ⇒ Q True
(P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ R) True

The converse of P ⇒ Q, i.e., Q ⇒ P is not always true.
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Proof by Negation (or Contradiction): To prove P ⇒ Q,

Assume P is true and Q is false, i.e., P ∧ ¬Q is true.

Derive a contradiction F .

Thus our assumption (P ∧ ¬Q) is false. Hence if P is
true, Q must be true.

In summary, we use

[(P ∧ ¬Q) ⇒ F ] ⇒ [P ⇒ Q],

where F is a contradiction.
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Proof by Induction: To prove P (n) is true for all n,

Prove P (1) is true.

Prove for all n, if P (n) is true, then P (n + 1) is true.

Then for all n, P (n) is true.

In summary, we use

P (1) ∧ ∀n[P (n) ⇒ P (n + 1)] ⇒ ∀n, P (n).
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