A Notation
B Linear Operators
C Change of Basis, Range Spaces, and Null Spaces
D Eigenvectors and Eigenvalues
E Matrix polynomials and functions
F Hermitian and Definite Matrices
G The Singular-Value Decomposition
H Operator Theory

A. Notation

\(\left.\begin{array}{ll}\mathcal{R}(A) \& range space of the operator A

\mathcal{N}(A) \& null space of the operator A\end{array}\right]\)| | |
| :--- | :--- |
| A^{\prime} | the transpose of the matrix A |
| A^{*} | the adjoint of the operator A, or the complex-conjugate-transpose of the matrix A |
| $A>0$ | a positive-definite matrix |
| $A \geq 0$ | a positive-semi-definite matrix |
| $\lambda_{i}(A)$ | $\mathrm{i}^{\text {th }}$ eigenvalue of A |
| $\mathrm{Spec}(A)$ | the set of eigenvalues of A
 $\rho(A)$ |
| spectral radius of $A=\max _{i}\left\|\lambda_{i}(A)\right\|$
 $\sigma_{i}(A)$ | ith singular value of $A($ in descending order $)$
 $\bar{\sigma}$ |
| $\underline{\sigma}$ | largest singular value
 smallest nonzero singular value |

B. Linear Operators

1 Let \mathbf{V} and \mathbf{W} be vector spaces over the same base field \mathbf{F}.
Definition A linear operator is a mapping

$$
\mathcal{M}: \mathbf{V} \longrightarrow \mathbf{W}
$$

such that for all $v_{1}, v_{2} \in \mathbf{V}$ and all $\alpha \in \mathbf{F}$
(a) $\mathcal{M}\left(v_{1}+v_{2}\right)=\mathcal{M}\left(v_{1}\right)+\mathcal{M}\left(v_{2}\right) \quad$ (additivity)
(b) $\mathcal{M}\left(\alpha v_{1}\right)=\alpha \mathcal{M}\left(v_{1}\right)$ (homogeneity)

2 Examples The following operators are linear:
$\diamond \mathcal{M}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}: v \rightarrow A v$ where $A \in \mathbf{C}^{m \times n}$
$\diamond \mathcal{M}: \mathcal{C}(-\infty, \infty) \rightarrow \mathbf{R}: f(t) \rightarrow f(0)$.
Is the operator \mathcal{M} above familiar ?
\diamond Suppose $h(t) \in L_{2}[a, b]$ and consider

$$
\mathcal{M}: L_{2}[a, b] \rightarrow \mathbf{R}: f(t) \rightarrow \int_{a}^{b} h(t) f(t) d t
$$

Why do we insist that $f \in L_{2}[a, b]$ above ?
\diamond Let $A, B, X \in \mathbf{R}^{n \times n}$ and consider

$$
\mathcal{M}: \mathbf{R}^{n \times n} \rightarrow \mathbf{R}^{n \times n}: X \rightarrow A X+X B
$$

3 Linear operators on finite dimensional vector spaces are matrices with the action of matrix-vector multiplication.
Theorem Consider a linear operator $\mathcal{M}: \mathbf{V} \rightarrow \mathbf{W}$ where $\operatorname{dim}(\mathbf{V})=n, \operatorname{dim}(\mathbf{W})=$ m. Let $B=\left\{b_{1}, \cdots, b_{n}\right\}$ and $C=\left\{c_{1}, \cdots, c_{n}\right\}$ be basis for \mathbf{V} and \mathbf{W} respectively.

Suppose $\mathcal{M}\left(b_{j}\right)=\sum_{i=1}^{m} \alpha_{i, j} c_{i}$. Let $v=\sum_{j} \gamma_{j} b_{j}$. Then, $\mathcal{M}(v)=\sum_{i=1}^{m} \tau_{i} c_{i}$ where

$$
\tau=\left[\begin{array}{c}
\tau_{1} \\
\vdots \\
\tau_{m}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, n} \\
\vdots & \cdots & \vdots \\
\alpha_{m .1} & \cdots & \alpha_{m, n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right]=M \beta
$$

The above result says that if we make the canonical (bijective) association of v with β and of $\mathcal{M}(v)$ with τ, then the action of the operator \mathcal{M} corresponds to matrix-vector multiplication as $\tau=M \beta$. The matrix M clearly depends on the particular choice of basis made and is called the matrix representation of \mathcal{M} with respect to these basis.

Let us explain this result another way.
Since \mathbf{V} is of dimension n, it is isomorphic to \mathbf{C}^{n}. In other words (see Notes on Vector Spaces, B-11), there exists a bijection $\phi: \mathbf{V} \rightarrow \mathbf{C}^{n}$ such that for all $v_{1}, v_{2} \in \mathbf{V}$ and $\alpha \in \mathbf{C}$

$$
\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right), \quad \text { and } \quad \phi\left(\alpha v_{1}\right)=\alpha \phi\left(v_{1}\right)
$$

This isomorphism can be exhibited explicity as follows. Fix a basis $B=\left\{b_{1}, \cdots, b_{n}\right\}$ for \mathbf{V}. Any vector $v \in \mathbf{V}$ can be expressed as a (unique) linear combination $v=\sum_{i=1}^{n} \alpha_{i} b_{i}$. With the abstract vector $v \in \mathbf{V}$, we associate the concrete vector

$$
\phi(v)=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right] \in \mathbf{C}^{n}
$$

Of course the concrete representation depends on the choice of basis B.
In a similar fashion, given a basis $C=\left\{c_{1}, \cdots, c_{n}\right\}$ for \mathbf{W}, we can exhibit a linear bijection $\psi: \mathbf{W} \rightarrow \mathbf{C}^{m}$.
Now let $\mathcal{M}: \mathbf{V} \rightarrow \mathbf{W}$ be a linear operator. The main theorem in this point is that the action of \mathcal{M} on an abstract vector v is equivalent to multiplication of a matrix $M \in \mathbf{C}^{m \times n}$ with the concrete representation $\phi(v)$ of the vector v. This is explained by saying that the following diagram commutes:

Armed with this association between matrices and linear operators on finite-dimensional vector spaces, we shall focus on matrix theory. Once our native intuition on matrices is sound, we will return to treat linear operators on infinite-dimensional vector spaces.

C. Change of Basis, Range Spaces, and Null Spaces

1 Change of bases.
Theorem Consider a linear operator $\mathcal{A}: \mathbf{V} \rightarrow \mathbf{W}$ where $\operatorname{dim}(\mathbf{V})=n, \operatorname{dim}(\mathbf{W})=m$. Let

$$
B=\left\{b_{1}, \cdots, b_{n}\right\} \quad \text { and } \hat{B}=\left\{\hat{b}_{1}, \cdots, \hat{b}_{n}\right\}
$$

be two basis for \mathbf{V} and let

$$
\hat{B}=B T, \quad T \in \mathbf{C}^{n \times n}
$$

Similarly let

$$
C=\left\{c_{1}, \cdots, c_{m}\right\} \quad \text { and } \hat{C}=\left\{\hat{c}_{1}, \cdots, \hat{c}_{m}\right\}
$$

be two basis for \mathbf{V} and let

$$
\hat{C}=C R, \quad T \in \mathbf{C}^{m \times m}
$$

Let A and \hat{A} be the matrix representations of the operator ϕ with respect to the basis B, C and \hat{B}, \hat{C} respectively. Then,
(a) R and T are nonsingular.
(b) $\hat{A}=R^{-1} A T$

A particularly important case of the above result is when $\mathbf{V}=\mathbf{W}$. Let $\hat{B}=B T$ relate the basis B and \hat{B} of \mathbf{V} and let A and \hat{A} be the matrix representations of the operator ϕ with respect to the basis B and \hat{B} respectively. Then,
(a) T is nonsingular.
(b) $\hat{A}=T^{-1} A T$

We therefore conclude that the square matrices A and $T^{-1} A T$ represent the same operator, albeit with respect to different basis. These matrices are said to be similar and the transformation T is called a similarity transformation. As one would expect, similar matrices have a lot in common, for instance, they have the same eigenvalues. They do not, however, have the same eigenvectors. Indeed, if v is an eigenvector of A with eigenvalue λ, then $T^{-1} v$ is an eigenvector of \hat{A} corresponding to the same eigenvalue.

2 Example (Rotation operators)

Consider the vector space \mathbf{R}^{2} and let ϕ be the operator that rotates a given vector by θ° counterclockwise. Then, the matrix representation of ϕ with respect to the standard basis is

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

3 Definition The range space $\mathcal{R}(T)$ of a linear operator T is the set

$$
\mathcal{R}(T)=\{y \in \mathbf{W}: T(x)=y \text { for some } x \in \mathbf{V}\}
$$

The null space $\mathcal{N}(T)$ of T is the set

$$
\mathcal{N}(T)=\{x \in \mathbf{V}: T(x)=0\}
$$

It is easy to verify that $\mathcal{R}(T)$ and $\mathcal{N}(T)$ are subspaces of \mathbf{W} and \mathbf{V} respectively.
Let $A \in \mathbf{C}^{m \times n}$ be a linear operator. Then $\mathcal{R}(A)$ is simply the set of all linear combinations of the columns of A and $\mathcal{N}(A)$ is the set of vectors $x \in \mathbf{C}^{n}$ such that $A x=0$.

4 Lemma Let A, B be complex matrices of compatible dimensions.
(a) $\left(A^{*}\right)^{*}=A$
(b) $(A+B)^{*}=A^{*}+B^{*}$
(c) $(A B)^{*}=B^{*} A^{*}$
(d) If A is nonsingular, then $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$

5 We shall make extensive use of the following result.
Theorem Let $A \in \mathbf{C}^{m \times n}$. Then
(a) $\mathcal{R}^{\perp}(A)=\mathcal{N}\left(A^{*}\right)$
(b) $\mathbf{C}^{m}=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)$
(c) $\mathcal{N}\left(A^{*} A\right)=\mathcal{N}(A)$
(d) $\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A)$

6 Definition The rank of a matrix A is the dimension of $\mathcal{R}(A)$.
The nullity of a matrix A is the dimension of $\mathcal{N}(A)$.
7 Theorem Let $A \in \mathbf{C}^{m \times n}$ and $B \in \mathbf{C}^{n \times r}$. Then
(a) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)$
(b) $\operatorname{rank}(A) \leq \min \{m, n\}$
(c) $\operatorname{rank}(A)+$ nullity $\left(A^{*}\right)=m$
(d) $\operatorname{rank}\left(A^{*}\right)+$ nullity $(A)=n$
(e) $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}\left(A^{*} A\right)$
(f) (Sylvester's inequality)

$$
\operatorname{rank}(A)+\operatorname{rank}(B)-n \leq \operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}
$$

8 Theorem Let $A \in \mathbf{C}^{m \times n}$ and $C \in \mathbf{C}^{n \times n}$ and suppose C is invertible. Then, $\mathcal{R}(A)=\mathcal{R}(A C)$ and thus rank $(A)=\operatorname{rank}(A C)$

D. Eigenvectors and Eigenvalues

1 Definition Let $A \in \mathbf{C}^{n \times n}$. The characteristic polynomial of A written

$$
\chi(s)=\operatorname{det}(s I-A)=s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{1} s^{1}+\alpha_{0} s^{0}
$$

The roots of $\chi(s)$ of which there are n are called the eigenvalues of A.
Lemma The eigenvalues of $A \in \mathbf{C}^{n \times n}$ are continuous functions of the entries of A.

Lemma Let $A \in \mathbf{C}^{n \times n}$ and λ be an eigenvalue of A. Then, there exists a vector $v \neq 0$ such that $A v=\lambda v$. This vector v is called an eigenvector of A with associated eigenvalue λ.

It is evident that any nonzero multiple of v is also an eigenvector corresponding to the same eigenvalue. We view an eigenvector as a vector whose direction is invariant under the action of A. In the context of this interpretation, we regard all (nonzero) scalar multiples of an eigenvector as being the same eigenvector.

Let A have distinct eigenvalues. Then it has a full set of (i.e. n linearly independent) eigenvectors. This assertion will be proved shortly. If however A has repeated eigenvalues a pathology may arise in that we are unable to find a full set of eigenvectors.

Definition A matrix $A \in \mathbf{C}^{n \times n}$ is called simple if it has distinct eigenvalues. A matrix A is called semi-simple if it has n linearly independent eigenvectors.

2 Definition Let $A \in \mathbf{C}^{n \times n}$. A subspace $\mathcal{S} \subseteq \mathbf{C}^{n}$ is called A-invariant if $A x \in \mathcal{S}$ for all $x \in \mathcal{S}$.

Theorem Let $A \in \mathbf{C}^{n \times n}$ and let $\mathcal{S} \subseteq \mathbf{C}^{n}$ be an A-invariant subspace. Then \mathcal{S} contains atleast one eigenvector of A.
Theorem Let $A \in \mathbf{C}^{n \times n}$ and let $\mathcal{S} \subseteq \mathbf{C}^{n}$ be an A-invariant subspace. Then \mathcal{S}^{\perp} is A^{*}-invariant.

Using these results, one can prove the following
Theorem Let $A, B \in \mathbf{C}^{n \times n}$ be commuting matrices, i.e. $A B=B A$. Then, A and B share a common eigenvector.

3 Simple-case of the Jordan form
Let $\mathcal{A}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a linear operator and let A be the matrix representation of this operator with respect to some basis, say the standard basis of \mathbf{C}^{n}. We wish to make a special choice of basis so that the (new) matrix representation of \mathcal{A} has particularly lucid structure. Equivalently, we wish to select a nonsingular matrix T in order that $T^{-1} A T$ has a transparent form called the Jordan canonical from.

In the special case where A is simple, we have the following key result.

Theorem Let $A \in \mathbf{C}^{n \times n}$ be simple with eigenvalues λ_{i} and corresponding eigenvectors v_{i}, for $i=1, \cdots, n$. Then
(a) The eigenvectors form a basis for \mathbf{C}^{n}.
(b) Define the (nonsingular) matrix T and the matrix Λ by

$$
T=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right] \quad, \quad \Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Then,

$$
T^{-1} A T=\Lambda
$$

The matrix Λ above is called the Jordan form of A. Observe that this matrix is diagonal and its diagonal entries are the eigenvalues of A.

4 Example Let

$$
A=\left[\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right]
$$

This matrix is simple and has eigenvalues at $1,-1$ with associated eigenvectors $\left[\begin{array}{ll}3 & 1\end{array}\right]^{\prime}$ and $\left[\begin{array}{ll}1 & 1\end{array}\right]^{\prime}$. It then follows that

$$
T^{-1} A T=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \text { where } \quad T=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]
$$

5 General case of the Jordan form
For an arbitrary matrix $A \in \mathbf{C}^{n \times n}$ the situation is significantly more complex. Let $\lambda_{1}, \cdots, \lambda_{k}$ be the eigenvalues of A with associated multiplicities m_{1}, \cdots, m_{k}. Observe that $\sum_{i} m_{i}=n$.
We have the following result:
Theorem There exists a nonsingular matrix $T \in \mathbf{C}^{n \times n}$ such that

$$
T^{-1} A T=\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & J_{k}
\end{array}\right]
$$

where the Jordan block $J_{\ell} \in \mathbf{C}^{\ell \times \ell}$ corresponding to the eigenvalue λ_{ℓ} has the structure

$$
J_{\ell}=\left[\begin{array}{cccc}
J_{1, \ell} & 0 & \cdots & 0 \\
0 & J_{2, \ell} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & J_{r_{\ell}, \ell}
\end{array}\right]
$$

and the Jordan sub-blocks are as

$$
J_{i, \ell}=\left[\begin{array}{ccccc}
\lambda_{\ell} & 1 & \cdots & 0 & 0 \\
0 & \lambda_{\ell} & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{\ell} & 1 \\
0 & 0 & \cdots & 0 & \lambda_{\ell}
\end{array}\right]
$$

In order to determine the Jordan form of A we require the sizes and number of the various sub-blocks $J_{i, \ell}$ as well as the associated transformation matrix T. This is a complicated task, and we shall not delve into it. We should point out the following:
(a) The eigenvalues of A, including multiplicity, appear on the diagonal of the Jordan form.
(b) If A is semi-simple, its Jordan form is diagonal.
(c) In the general case, the Jordan form may have $1^{\prime} s$ along portions of the superdiagonal.
(d) The Jordan form of a matrix A is not a continuous function of the entries of A. To see this consider

Example

$$
A_{\epsilon}=\left[\begin{array}{cc}
1+\epsilon & 1 \\
0 & 1
\end{array}\right]
$$

The Jordan form of A_{ϵ} for $\epsilon \neq 0$ is

$$
\left[\begin{array}{cc}
1+\epsilon & 0 \\
0 & 1
\end{array}\right]
$$

while the Jordan form for A_{0} is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

As a result one should steer clear of algorithms that require computation of the Jordan form of a matrix.

E. Matrix polynomials and functions

1 Let $A \in \mathbf{C}^{n \times n}$ and let $p(s)=\sum_{i=0}^{k} \alpha_{i} s^{i}$ be a polynomial. Then, we define

$$
p(A)=\sum_{i=0}^{k} \alpha_{i} A^{i} \in \mathbf{C}^{n \times n}
$$

where $A^{0}=I$.
We can generalize this notion to arbitrary (analytic) functions as follows. Consider the Taylor series

$$
f(s)=\sum_{i=0}^{\infty} \alpha_{i} s^{i}
$$

and assume that this Taylor series converges on $\operatorname{Spec}(A)$. Then, we define

$$
f(A)=\sum_{i=0}^{\infty} \alpha_{i} A^{i} \in \mathbf{C}^{n \times n}
$$

(it will happen that this defining Taylor series also converges).
Lemma Let $f(s), g(s)$ be arbitrary functions and let $h(s)=f(s) g(s)$. Then
(a) $f(A) g(A)=g(A) f(A)=h(A)$
(b) $f\left(T^{-1} A T\right)=T^{-1} f(A) T$
(c)
$f\left(\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]\right)=\left[\begin{array}{cc}f(A) & 0 \\ 0 & f(B)\end{array}\right]$

2 Computing functions of a matrix
We begin with the case where $A \in \mathbf{C}^{n \times n}$ is simple. In this case, the Jordan form $J=T^{-1} A T$ of A is diagonal and may be readily computed as in item (D-3). We can then employ properties (b) and (c) above to write

$$
f(A)=T f(J) T^{-1}=T\left[\begin{array}{cccc}
f\left(\lambda_{1}\right) & 0 & \cdots & 0 \\
0 & f\left(\lambda_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & f\left(\lambda_{n}\right)
\end{array}\right] T^{-1}
$$

Observe that $f\left(\lambda_{i}\right)$ are well-defined because $f(s)$ converges on $\operatorname{Spec}(A)$. The reason we impose this requirement in defining $f(A)$ is now transparent.

Example Let A be as in item (D-4). We compute A^{300} :

$$
A^{300}=T J^{300} T^{-1}=T\left[\begin{array}{cc}
1^{300} & 0 \\
0 & -1^{300}
\end{array}\right] T^{-1}=I
$$

We now turn our attention to the general case. Again, we shall proceed via the Jordan canonical form (see item (D-5)). Using the same idea, we see that we need to be able to compute $f(J)$ for a general Jordan block

$$
J=\left[\begin{array}{ccccc}
\lambda & 1 & \cdots & 0 & 0 \\
0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

It turns out that (try to prove this !!!)

$$
f(J)=\left[\begin{array}{ccccc}
f(\lambda) & \frac{1}{1!} f^{(1)}(\lambda) & \cdots & \frac{1}{(k-2)!} f^{(k-2)}(\lambda) & \frac{1}{(k-1)!} f^{(k-1)}(\lambda) \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & f(\lambda) & \frac{1}{1!} f^{(1)}(\lambda) \\
0 & 0 & \cdots & 0 & f(\lambda)
\end{array}\right]
$$

Observe that the derivatives $f^{(i)}(\lambda)$ above exist. Why? We are therefore in a position to compute (analytic) functions of an arbitrary matrix.
Example Consider the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

Using the above result, we obtain

$$
\cos (A)=\left[\begin{array}{cc}
\cos (2) & -\sin (2) \\
0 & \cos (2)
\end{array}\right]
$$

3 The Spectral Mapping Theorem.

Theorem Let $A \in \mathbf{C}^{n \times n}$ and let $f(s)$ be an arbitrary analytic function.
(a) Suppose A has eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$. Then, the eigenvalues of $f(A)$ are $\left\{f\left(\lambda_{1}\right), \cdots, f\left(\lambda_{n}\right)\right\}$.
(b) Let v be an eigenvector of A with associated eigenvalue λ. Then v is also an eigenvector of $f(A)$ with associated eigenvalue $f(\lambda)$.

4 Matrix exponentials.
Matrix exponentials are particularly important and arise in connection with systems of coupled linear ordinary differential equations. Since the Taylor series

$$
e^{s t}=1+s t+\frac{s^{2} t^{2}}{2!}+\frac{s^{3} t^{3}}{3!}+\cdots
$$

converges everywhere, we can define the exponential of any matrix $A \in \mathbf{C}^{n \times n}$ by

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\cdots
$$

5 Properties of Matrix exponentials.

Theorem

(a) $e^{A 0}=I$
(b)
$e^{A(t+s)}=e^{A t} e^{A s}$
(c) If $A B=B A$ then

$$
e^{(A+B) t}=e^{A t} e^{B t}=e^{B t} e^{A t}
$$

(d) $\operatorname{det}\left[e^{A t}\right]=e^{\text {trace } A t}$
(e) $e^{A t}$ is nonsingular for all $-\infty<t<\infty$ and

$$
\left[e^{A t}\right]^{-1}=e^{-A t}
$$

(f) $e^{A t}$ is the unique solution X of the linear system of ordinary differential equations

$$
\dot{X}=A X, \quad \text { subject to } \quad X(0)=I
$$

6 Computing Matrix exponentials.
We may compute matrix exponentials via the method outlined in item (2).
Example Let A be as in item (D-4). We compute $e^{A t}$:

$$
e^{A t}=T e^{J t} T^{-1}=T\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right]=\left[\begin{array}{cc}
1.5 e^{t}-0.5 e^{-t} & -1.5 e^{t}+1.5 e^{-t} \\
0.5 e^{t}-0.5 e^{-t} & -0.5 e^{t}+1.5 e^{-t}
\end{array}\right]
$$

Example Consider the matrix $J \in \mathbf{C}^{n \times n}$ as

$$
J=\left[\begin{array}{ccccc}
\lambda & 1 & \cdots & 0 & 0 \\
0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

This matrix is a typical component in the Jordan form of an arbitrary matrix. We shall compute $e^{J t}$. We may, of course, employ the expression given in item (2), but we shall take a different route. First observe that

$$
J=\lambda I+\left[\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]=A+N
$$

and that $A N=N A$. Thus $e^{J t}=e^{A t} e^{N t}$. Since N is nilpotent with index n, we have

$$
e^{N t}=I+N t+\frac{N^{2} t^{2}}{2!}+\cdots+\frac{N^{n-1} t^{n-1}}{(n-1)!}=\left[\begin{array}{ccccc}
1 & t & \frac{1}{2!} t^{2} & \cdots & \frac{1}{(n-1)!} t^{(n-1)} \\
0 & 1 & t & \cdots & \frac{1}{(n-2)!} t^{(n-2)} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

from which we immediately have $e^{A t}$.
As an alternate method for computing matrix exponentials, we have the following

Theorem

$$
e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}
$$

where \mathcal{L} denotes the Laplace transformation.
Example Consider the matrix

$$
A=\left[\begin{array}{cc}
\sigma & \omega \\
-\omega & \sigma
\end{array}\right]
$$

Using the above result we obtain

$$
\begin{aligned}
e^{A t} & =\mathcal{L}^{-1}\left\{\frac{1}{(s-\sigma)^{2}+\omega^{2}}\left[\begin{array}{cc}
s-\sigma & \omega \\
-\omega & s-\sigma
\end{array}\right]\right\} \\
& =e^{\sigma t}\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right]
\end{aligned}
$$

7 The Cayley-Hamilton Theorem.

We shall make frequent use of the following fundamental result.
Theorem Let $A \in \mathbf{C}^{n \times n}$ and let

$$
\chi(s)=s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{1} s^{1}+\alpha_{0}
$$

be the characteristic polynomial of A. Then,

$$
\chi(A)=0
$$

As a consequence of this theorem, it is evident that A^{n} is a linear combination of the set of matrices $\mathcal{S}=\left\{I, A, \cdots, A^{n-1}\right\}$. By an inductive argument it follows that any power of A, and therefore any function of A is expressible as a linear combination in \mathcal{S}.

In particular, we have
Lemma Let $A \in \mathbf{C}^{n \times n}$ and let $f(s)$ be any (analytic) function for which $f(A)$ is defined. Then

$$
f(A) \in \mathcal{R}\left(\left[\begin{array}{llll}
I & A & \cdots & A^{(n-1)}
\end{array}\right]\right)
$$

8 Definition Let $A \in \mathbf{C}^{n \times n}$. A polynomial $p(s)$ is called an annihilating polynomial of A if $p(A)=0$. The minimal polynomial of A is the least degree, monic annihilating polynomial.

Lemma Every annihilating polynomial of A is divisible by the minimal polynomial $m(s)$ of A.

F. Hermitian and Definite Matrices

1 Definition A matrix $U \in \mathbf{C}^{n \times n}$ is called unitary if $U^{*} U=I=U U^{*}$.
A real unitary matrix is called an orthogonal matrix.
Lemma Let $U \in \mathbf{C}^{n \times n}$ be unitary and consider the Hilbert space \mathbf{C}^{n} equipped with the usual inner product. Then,
(a) The columns of U form an orthonormal basis of \mathbf{C}^{n}.
(b) $\|U x\|=\|x\|$
(c) $\langle U x, U y>=\langle x, y\rangle$
(d) $U^{-1}=U^{*}$.

Rotation matrices (see item (B-2)) are unitary.
2 Definition A matrix $H \in \mathbf{C}^{n \times n}$ is called Hermitian if $H=H^{*}$.
Symmetric matrices are in particular Hermitian.
We will now prove several results regarding Hermitian matrices. These results also hold almost verbatim for symmetric matrices.

3 Theorem The eigenvalues of a Hermitian matrix H are all real.
4 Theorem A Hermitian matrix H has a full set of eigenvectors. Moreover, these eigenvectors form an orthogonal set. As a consequence, Hermitian matrices can be diagonalized by unitary transformations, i.e. there exists a unitary matrix U such that

$$
H=U D U^{*}
$$

where D is a diagonal matrix whose entries are the (real) eigenvalues of H.
5 Theorem Let $H \in \mathbf{C}^{n \times n}$ be Hermitian. Then,
(a) $\sup _{v \neq 0} \frac{v^{*} P v}{v^{*} v}=\lambda_{\max }(P)$
(b) $\quad \inf _{v \neq 0} \frac{v^{*} P v}{v^{*} v}=\lambda_{\min }(P)$

6 Definition A matrix $P \in \mathbf{C}^{n \times n}$ is called positive-definite written $P>0$ if P is Hermitian and further,

$$
v^{*} P v>0, \text { for all } 0 \neq v \in \mathbf{C}^{n}
$$

A matrix $P \in \mathbf{C}^{n \times n}$ is called positive-semi-definite written $P \geq 0$ if P is Hermitian and further,

$$
v^{*} P v \geq 0, \text { for all } v \in \mathbf{C}^{n}
$$

Analogous are the notions of negative- and negative-semi- definite matrices.
7 Theorem Let $P \in \mathbf{C}^{n \times n}$ be Hermitian. The following are equivalent.
(a) $P>0$
(b) All the eigenvalues of P are positive.
(c) All the principal minors of P are positive.

Theorem Let $P \in \mathbf{C}^{n \times n}$ be Hermitian. The following are equivalent.
(a) $P \geq 0$
(b) All the eigenvalues of P are ≥ 0.

A principal minor test for positive-semi-definiteness is significantly more complicated.
8 Lemma Let $0<P \in \mathbf{C}^{n \times n}$ and let $X \in \mathbf{C}^{n \times m}$.
(a) $\|x\|^{2}=x^{*} P x$ qualifies as a norm on \mathbf{C}^{n}
(b) $X^{*} P X \geq 0$
(c) $X^{*} P X>0$ if and only if rank $(X)=m$

9 Definition Let $0 \leq P \in \mathbf{C}^{n \times n}$. We can then write $P=U D U^{*}$ where U is unitary. Define the square-root of P written $P^{\frac{1}{2}}$ by

$$
P^{\frac{1}{2}}=U D^{\frac{1}{2}} U^{*}
$$

It is evident that $P^{\frac{1}{2}}$ as defined above is Hermitian, and moreover $P^{\frac{1}{2}} \geq 0$. Further, if $P>0$, then $P^{\frac{1}{2}}>0$.

G. The Singular-Value Decomposition

1 Theorem Let $M \in \mathbf{C}^{m \times n}$ with $\operatorname{rank}(M)=r$. Then we can find unitary matrices $U \in \mathbf{C}^{m \times m}$ and $V \in \mathbf{C}^{n \times n}$ such that

$$
M=U \Sigma V^{*}=U\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right] V^{*}
$$

where

$$
\Sigma_{1}=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \sigma_{r}
\end{array}\right]
$$

The real numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ are called the singular values of M and the representation above is called the singular-value decomposition of M.

2 Theorem Let $M \in \mathbf{C}^{m \times n}$ with $\operatorname{rank}(M)=r$ and let $M=U \Sigma V^{*}$ be the singularvalue decomposition of M. Partition U and V as

$$
U=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right], \quad V=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]
$$

where U_{1} and V_{1} are in $\mathbf{C}^{r \times r}$. Then
(a) The columns of U_{1} and U_{2} form orthonormal bases for $\mathcal{R}(M)$ and $\mathcal{N}\left(M^{*}\right)$ respectively.
(b) The columns of V_{1} and V_{2} form orthonormal bases for $\mathcal{R}\left(M^{*}\right)$ and $\mathcal{N}(M)$ respectively.

3 Computing the singular-value decomposition
While definitely not the method of choice vis-a-vis numerical aspects, the following result provides an adequate method for determining the singular-value decomposition of a matrix.

Theorem Let $M \in \mathbf{C}^{m \times n}$ with rank $(M)=r$. Let $\lambda_{1}, \cdots, \lambda_{r}$ be the nonzero eigenvalues of $M^{*} M$. These will be nonnegative because $M^{*} M \geq 0$. Also, from item (F-4) it follows that there exist unitary matrices $U \in \mathbf{C}^{m \times m}$ and $V \in \mathbf{C}^{n \times n}$ such that

$$
M M^{*}=U\left[\begin{array}{cc}
\Lambda & 0 \\
0 & 0
\end{array}\right] U^{*} \quad \text { and } \quad M^{*} M=V\left[\begin{array}{cc}
\Lambda & 0 \\
0 & 0
\end{array}\right] V^{*}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{r}\right)$.

Then the singular-value decomposition of M is

$$
M=U\left[\begin{array}{cc}
\Lambda^{\frac{1}{2}} & 0 \\
0 & 0
\end{array}\right] V^{*}
$$

and the singular values of M are $\lambda_{1}^{\frac{1}{2}}, \cdots, \lambda_{r}^{\frac{1}{2}}$.
4 Optimal rank q approximations of matrices
Theorem Let $M \in \mathbf{C}^{m \times n}$ with rank $(M)=r$ have singulat value decomposition as

$$
M=U\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right] V^{*}, \text { where } \Sigma_{1}=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \sigma_{r}
\end{array}\right]
$$

Define the matrix

$$
\hat{M}=U\left[\begin{array}{cc}
\hat{\Sigma}_{1} & 0 \\
0 & 0
\end{array}\right] V^{*}, \quad \text { where } \quad \hat{\Sigma}_{1}=\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & \sigma_{q}
\end{array}\right]
$$

H. Linear Operators

1 We now return to treat linear operators on general (not necessarily finite dimensional) vector spaces. We focus on linear operators on normed spaces. Let V, W be normed spaces.
Definition A linear operator

$$
T: \mathbf{V} \rightarrow \mathbf{W}
$$

is called bounded if

$$
\sup _{v \in \mathbf{V}} \frac{\|T(v)\|_{\mathbf{w}}}{\|v\|_{\mathbf{V}}}<\infty
$$

The set of $B(\mathbf{V}, \mathbf{W})$ bounded linear operators $T: \mathbf{V} \rightarrow \mathbf{W}$ forms a vector space under operation addition and operator scaling:

$$
\left(T_{1}+T_{2}\right) v=T_{1}(v)+T_{2}(v), \quad\left(\alpha T_{1}\right) v=\alpha\left(T_{1} v\right)
$$

It can readily be shown that $B(\mathbf{V}, \mathbf{W})$ is a normed space with the norm defined as

$$
\|T\|=\sup _{v \in \mathbf{V}} \frac{\|T(v)\|_{\mathbf{W}}}{\|v\|_{\mathbf{V}}}
$$

This definition of norm is called the induced operator norm as it is induced from the norms on \mathbf{V} and \mathbf{W}.

2 Examples

3 Theorem Let \mathbf{V}, \mathbf{W} be normed spaces and consider the linear operator

$$
T: \mathbf{V} \rightarrow \mathbf{W}
$$

Then, the following are equivalent:
(a) T is continuous everywhere.
(b) T is continuous at 0 .
(c) T is bounded.
(d) $\mathcal{N}(T)$ is complete.

4 The situation becomes even more interesting when we consider linear operators on inner product spaces. We shall first require the following result.

Theorem (Reisz Representation Theorem)
Let \mathbf{H} be a Hilbert space and consider a bounded linear operator

$$
\phi: \mathbf{H} \rightarrow \mathbf{C}
$$

Then, there exists a vector $x \in \mathbf{H}$ such that for all $h \in \mathbf{H}$,

$$
\phi(h)=\langle x, h\rangle
$$

5 Let \mathbf{V} and \mathbf{W} be Hilbert spaces and consider a linear operator

$$
T: \mathbf{V} \longrightarrow \mathbf{W}
$$

Lemma Fix $w \in \mathbf{W}$. Then there is a unique vector $x \in \mathbf{V}$ such that

$$
\langle w, v\rangle=\langle x, v\rangle \quad \text { for all } v \in \mathbf{V}
$$

This lemma allows us make the following
Definition The adjoint of T written T^{*} is the operator

$$
T: \mathbf{W} \longrightarrow \mathbf{V}
$$

defined (uniquely) by

$$
\left.<w, T(v)\rangle=<T^{*}(w), v\right\rangle \quad \text { for all } v \in \mathbf{V}
$$

6 Examples

