
Linear Algebra Preliminaries

1. Set notation

2. Fields, vector spaces, normed vector spaces, inner product spaces

3. More notation

4. Vectors in Rn,Cn, norms

5. Matrix Facts (determinants, inversion formulae)

6. Normed vector spaces, inner product spaces

7. Linear transformations

8. Matrices, matrix multiplication as linear transformation

9. Induced norms of matrices

10. Schur decomposition of matrices

11. Symmetric, Hermitian and Normal matrices

12. Positive and Negative definite matrices

13. Singular Value decomposition

14. Hermitian square roots of positive semidefinite matrices

15. Schur complements

16. Matrix Dilation, Parrott’s theorem

17. Completion of Squares

ME 234, UC Berkeley, Spring 2003, Packard

65



Some Notation Sets, functions

1. R is the set of real numbers. C is the set of complex numbers.

2. N is the set of integers.

3. The set of all n× 1 column vectors with real number entries is

denoted Rn. The i’th entry of a column vector x is denoted xi.

4. The set of all n×m rectangular matrices with complex number

entries is denoted Cn×m. The element in the i’th row, j’th

column of a matrix M is denoted by Mij, or mij.

5. Set notation:

(a) a ∈ A is read: “a is an element of A”

(b) X ⊂ Y is read: “X is a subset of Y ”

(c) If A and B are sets, then A×B is a new set, consisting of

all ordered-pairs drawn from A and B,

A×B := {(a, b) : a ∈ A, b ∈ B}

(d) The expression {A : B} is read as:

“The set of all insert expression A
such that insert expression B.”

Hence 




x ∈ R3 :

3∑

i=1
x2
i ≤ 1







is the ball of radius 1, centered at the origin, in 3-dimensional

euclidean space.

6. The notation f : X → Y implies that X and Y are sets, and

f is a function mapping X into Y
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Fields

A field consists of: a set F (which must contain at least 2 elements)

and two operations, addition (+) and multiplication (·), each map-

ping F × F → F . Several axioms must be satisfied:

• For every a, b ∈ F , there corresponds an element a + b ∈ F ,

the addition of a and b. For all a, b, c ∈ F , it must be that

a + b = b + a

(a + b) + c = a + (b + c)

• There is a unique element θ ∈ F (or 0F , θF , or just 0) such

that for every a ∈ F , a + θ = a. Moreover, for every a ∈ F ,

there is a unique element labled −a such that a + (−a) = θ.

• For every a, b ∈ F , there corresponds an element a · b ∈ F , the

multiplication of a and b. For every a, b, c ∈ F

a · b = b · a
a · (b · c) = (a · b) · c.

• There is a unique element 1F ∈ F (or just 1) such that for every

a ∈ F , 1·a = a·1 = a. Moreover, for every a ∈ F , a 6= θ, there

is a unique element, labled a−1 ∈ F such that a · a−1 = 1F .

• For every a, b, c ∈ F ,

a · (b + c) = a · b + a · c

Example: The real numbers R, the complex numbers C, and the

rational numbers Q are three examples of fields.
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Vector Spaces

A vector space consists of:

• a set V , whose elements are called “vectors,” and

• a field F (often just R or C, and then denoted F) whose ele-

ments are “scalars.”

Two operations,

• addition of vectors, and

• scalar multiplication

are defined and must satisfy the following relationships:

• For every u,w ∈ V , there corresponds a vector u+w ∈ V such

that for all u, v, w ∈ V
1. u + w = w + u

2. (u + w) + v = u + (w + v)

There is a unique vector θV (or 0V , θ, or just 0) such that for

every w ∈ V , w + θV = w. Moreover, for every w ∈ V , there is

a unique vector labled −w such that w + (−w) = θV .

• For every α ∈ F and w ∈ V there corresponds a vector αw ∈
V . The operation must satisfy 1w = w for all w ∈ V and for

every u,w ∈ V , α, β ∈ F the distributive laws

1. α(u + w) = αu + αw

2. (α + β)u = αu + βu

must hold.
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Vector Spaces Product Spaces

If Z and W are vector spaces over the same F , then Z ×W is also

a vector space (field F), with addition and scalar multiplication

defined “coordinatewise.”

Specifically, if q1, q2 ∈ Z ×W , then each qi is of the form

qi = (zi, wi).

For α ∈ F , define

αq1 := (αz1, αw1) , q1 + q2 := (z1 + z2, w1 + w2)

ME 234, UC Berkeley, Spring 2003, Packard

69



Vector Spaces Simple Examples

• n > 0, V = Rn, F = R, addition and scalar multiplication

defined in terms of components

(x + y)i := xi + yi, (αx)i := αxi

• n > 0, V = Cn, F = C, addition and scalar multiplication

again defined in terms of components.

• n > 0, V = Cn, F = R, addition and scalar multiplication

again defined in terms of components.

• n,m > 0, V = Fn×m, F = F, addition and scalar multiplica-

tion defined entrywise

(A + B)i,j := Ai,j + Bi,j, (αA)i,j := αAi,j

• V := all continuous, real− valued functions defined on [0 1],F =

R. Addition and scalar multiplication defined pointwise: for

f, g ∈ V , α ∈ R
(f + g)(x) := f (x) + g(x), (αf )(x) := αf (x)

• V := all piecewise continuous, real-valued functions defined on

[0 ∞), with a finite number of discontinuities in any finite in-

terval, F = R. Addition and scalar multiplication defined

pointwise, as before. For future, call this space PC[0,∞).

• Same function space as above, with further restriction that

max
x≥0

|f (x)| <∞ or
∫ ∞
0
|f (η)| dη <∞

Call these PC∞[0,∞), and PC1[0,∞), respectively.
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Linear Algebra Vector/Matrix Notation

1. In a statement, if F appears, it means that the statement is true

with F replaced by either R or C throughout the statement.

2. The set of all n× 1 column vectors with real number entries is

denoted Rn.

3. The set of all n×m rectangular matrices with complex number

entries is denoted Cn×m. The element in the i’th row, j’th

column of a matrix M is denoted by Mij, or mij.

4. If x ∈ C, x̄ ∈ C is the complex conjugate of x.

5. If M ∈ Fn×m, then MT is the transpose of M ; M ∗ is the

complex-conjugate transpose of M

6. If Q ∈ Fn×n, and Q∗Q = In, then Q is called unitary.

7. R+ := {α ∈ R : α ≥ 0}, N+ := {k ∈ N : k ≥ 0}
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Linear Algebra Eigenvalues

1. Eigenvalues: λ ∈ C is an eigenvalue of M ∈ Fn×n if there is a

vector v ∈ Cn, v 6= 0n, such that

Mv = λv

The vector v is called an eigenvector associated with eigenvalue

λ.

2. The eigenvalues of M ∈ Fn×n are the roots of the equation

pM(λ) := det (λIn −M) = 0

3. Fact: Every matrix has at least one eigenvalue and associated

eigenvector, since the polynomial pM(λ) has at least one root.

4. Fact: The eigenvalues of a matrix are continuous functions of

the entries of the matrix

5. For any n × m matrix A, and m × n matrix B, the nonzero

eigenvalues of AB are equal to the nonzero eigenvalues of BA.

6. A matrix M ∈ Fn×n is called Hurwitz if all of its eigenvalues

have negative real parts.

7. A matrix M ∈ Fn×n is called Schur if all of its eigenvalues have

absolute value less than 1.
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Linear Algebra Determinant Facts

1. If A and B are square matrices, then

(a) det (AB) = det (BA) = det(A) det(B)

(b) det(A) = det(AT )

(c) det (A∗) = det(A)

2. For any n×m matrix A, and m× n matrix B,

(a) det (In + AB) = det (Im + BA)

(b) (In + AB) is invertible if and only if (Im + BA) is invert-

ible, and moreover,

(c) (In + AB)−1 A = A (Im + BA)−1

3. If X and Z are square, Y compatible, then

det











X Y

0 Z









 = det(X) det(Z)

4. If X and Z are square, invertible, Y compatible, then





X 0

Y Z






−1

=






X−1 0

−Z−1Y X−1 Z−1






5. If A and D are square, D invertible, B,C compatible dimen-

sions, then





A B

C D




 =






A−BD−1C BD−1

0 I











I 0

C D






so that

det






A B

C D




 = det

(

A−BD−1C
)

det(D)
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Linear Algebra Matrix Inversion Lemmas

1. Suppose A and D are square, D invertible, B,C compatible
dimensions. If A−BD−1C is invertible then
[

A B

C D

]−1

=

[

I 0

−D−1C D−1

] [ (
A−BD−1C

)−1 − (A−BD−1C
)−1

BD−1

0 I

]

=

[ (
A−BD−1C

)−1 − (A−BD−1C
)−1

BD−1

−D−1C
(
A−BD−1C

)−1
D−1C

(
A−BD−1C

)−1
BD−1 + D−1

]

2. If A and D are square, invertible, B,C compatible dimensions,

then

det(D) det
(

A−BD−1C
)

= det(A) det
(

D − CA−1B
)

and if not 0, then
(

A−BD−1C
)−1

= A−1 + A−1B
(

D − CA−1B
)−1

CA−1

3. If A is square and invertible, and B,C and D are compatibly

dimensioned, then vectors d1, d2, e1 and e2 satisfy





e1

e2




 =






A B

C D











d1

d2






if and only if they satisfy





d1

e2




 =






A−1 −A−1B

CA−1 D − CA−1B











e1

d2
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Linear Algebra More Matrix Facts

In reparametrizing some optimization problems involving feedback,

the following is useful: Let T ∈ Fn×m be given. Define

S1 :=
{

K (I − TK)−1 : K ∈ Fm×n, det (I − TK) 6= 0
}

S2 :=
{

Q ∈ Fm×n : det (I −QT ) 6= 0
}

Then S1 = S2, and S2 is dense in F
m×n; that is, for any Q̃ ∈ Fm×n,

and any ε > 0, there is a Q ∈ S2 such that

max
1≤i≤m
1≤j≤n

|q̃ij − qij| < ε
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Normed Vector Spaces

Suppose (V ,F) is a vector space (again, F is either R or C). If

there is a function ‖·‖ : V → R such that for any u, v ∈ V , and
α ∈ F

• ‖u‖ ≥ 0

• ‖u‖ = 0 ⇔ u = 0n

• ‖αu‖ = |α| ‖u‖
• ‖u + v‖ ≤ ‖u‖ + ‖v‖

then the function ‖·‖ is called a norm on V , and (V ,F) is a normed
vector space
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Normed Vector Spaces Norms in Fn

For a vector v ∈ Fn, let vi be the i’th component. Define

‖v‖1 :=
n∑

i=1
|vi|

‖v‖2 :=





n∑

i=1
|vi|2





1/2

‖v‖∞ := max
1≤i≤n

|vi|

Each of these separate definitions satisfy all of the 4 axioms that

a norm must satisfy (all axioms are easy to check except triangle

inequality for ‖·‖2, which we will verify in a few slides).

Hence each of ‖·‖1 , ‖·‖2 , ‖·‖∞ are norms on Fn.

We will pretty much exclusively use the ‖·‖2 norm and often drop

the subscript 2, simply using ‖·‖. Some easy facts are

1. For v ∈ Fn, ‖v‖2 = v∗v

2. For v ∈ Fn, w ∈ Fm,

∥
∥
∥
∥
∥
∥
∥

v

w

∥
∥
∥
∥
∥
∥
∥

2

= ‖v‖2 + ‖w‖2.

3. If Q ∈ Fn×n, Q∗Q = In, then for all v ∈ Fn, ‖Qv‖ = ‖v‖
4. Given Q ∈ Fn×n, Q∗Q = In,

{x : x ∈ Fn, ‖x‖ ≤ 1} = {Qx : x ∈ Fn, ‖x‖ ≤ 1}

and

{x : x ∈ Fn, ‖x‖ = 1} = {Qx : x ∈ Fn, ‖x‖ = 1}
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Inner Product Spaces

A vector space (V ,F) is an inner product space if there is a function
< ·, · >: V × V → C such that for every u, v, w ∈ V and α ∈ F

the following hold:

1. 〈u, v〉 = 〈v, u〉
2. 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉
3. 〈αu,w〉 = ᾱ〈u,w〉
4. 〈u, u〉 ≥ 0

5. 〈u, u〉 = 0 if and only if u = 0.

The function 〈·, ·〉 is called the inner product on V .
Two vectors u,w ∈ V are said to be perpindicular, written u ⊥ w

if 〈u,w〉 = 0.

The most important inner product spaces that we will use in this

section are (Rn,R) and (Cn,C), with inner products defined as

u,w ∈ Rn, 〈u,w〉 :=
n∑

i
uiwi = uTw

u,w ∈ Cn, 〈u,w〉 :=
n∑

i
ūiwi = u∗w
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Schwarz inequality General setting

On (V ,F), define a function using by the inner-product. For each

v ∈ V define

N(v) :=
√

〈v, v〉
The Schwarz inequality relates inner products and N .

Theorem: For each u,w ∈ V |〈u,w〉| ≤ N(u)N(w).

Proof: Given u and w, find complex number α with |α| = 1, and

α〈u,w〉 = |〈u,w〉|. Then for any real number t,

0 ≤ 〈u + tαw, u + tαw〉 = N(u)2 + 2t |〈u,w〉| + t2N(w)2.

This is a quadratic function. Characterizing that the minimum

(over the real variable t) is non-negative gives the result.

|〈u,w〉| ≤ N(u)N(w)

The triangle inequality follows for N as well: Given any u,w ∈ V ,
N(u + w)2 = 〈u + w, u + w〉

= N(u)2 + 2Re (〈u,w〉) + N(w)2

≤ N(u)2 + 2 |〈u,w〉| + N(w)2

≤ N(u)2 + 2N(u)N(w) + N(w)2

= (N(u) + N(w))2

Hence, N is actually a norm on V , so every inner-product space is

in fact a normed vector space, using N , the norm induced from the

inner product. So, unless otherwise notated, using the symbol ‖·‖
when working with a inner-product space means the norm induced

from the inner product.

Note, if u and w are perpindicular, then ‖u + w‖2 = ‖u‖2 + ‖w‖2,

which is the “Pythagorean” theorem.
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Take A ∈ Cn×m. Then

1. The m columns of






Im
A




 are linearly independent, and are per-

pindicular to the n linearly independent columns of






−A∗

In






2. Take n > m, and assume the columns of A are linearly inde-

pendent. Suppose A⊥ is n× (n−m), has linearly independent

columns, and A∗⊥A = 0. If X is n × n, and invertible, then

XA and X−∗A⊥ each have linearly independent columns, and

are perpindicular to one another.
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Linear Transformations on Vector Spaces

Suppose V and W are vector spaces over the same field F . If

L : V → W satisfies

L(αv + βu) = αL(v) + βL(u)

for all α, β ∈ F , and all v, u ∈ V , then L is a linear transformation

on V to W .

Examples:

1. V = Cm, W = Cn, M ∈ Cn×m, and L defined by matrix-

vector multiplication: For v ∈ V , define L(v) as

L(v) := Mv, or componentwise (L(v))i :=
m∑

j=1
Mijvj

2. V = Rn×n, W = Rn×n, A ∈ Rn×n, and L defined by a

Lyapunov operator, For P ∈ V , define L(P ) as

L(P ) := ATP + PA

3. V = PC∞[0,∞), W = PC∞[0,∞), g ∈ PC1[0,∞), and L
defined by convolution, For v ∈ V , define Lv as

(Lv) (t) :=
∫ t

0
g(t− τ )v(τ )dτ

For the remainder of this handout, focus on the linear operator

defined by matrix-vector multiplication, and other results about

matrices.
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Linear Algebra Matrices as linear transformations

If M ∈ Fn×m, then M naturally defines a linear transformation

LM : Fm → Fn via standard matrix-vector multiplication.

For any v ∈ Rm

LM(v) := Mv

Typically, we will not take care to distingush the matrix from the

operation. Simply note that matrix-vector multiplication in a linear

transformation on the vector, namely, for all u, v ∈ Fm, α, β ∈ F,

M (αu + βv) = αMu + βMv

Using norms in Fm and Fn, the norm of the matrix transformation

can be characterized

Define

‖M‖α←β := max
u∈Fm,u 6=0m

‖Mu‖α
‖u‖β

This is the maximum amplification obtainable, via matrix-vector

multiplication, measuring sizes in the domain and range with norms.
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Linear Algebra Induced Norms of Matrices

Easy Facts: For M ∈ Fn×m,

1. Other characterizations are possible

‖M‖α←β = max
u∈Rm,‖u‖β≤1

‖Mu‖α = max
u∈Rm,‖u‖β=1

‖Mu‖α

2. Easily proven: ‖M‖1←1 = max
1≤j≤m

n∑

i=1
|Mij|

3. Easily proven: ‖M‖∞←∞ = max
1≤i≤n

m∑

j=1
|Mij|

4. Later: ‖M‖2←2 is characterized in terms of the eigenvalues of

M ∗M .

5. Interchanging rows and/or columns ofM does not change ‖M‖1←1,

‖M‖2←2, or ‖M‖∞←∞.
6. GivenU ∈ Fn×n, V ∈ Fm×m both unitary (ie., U ∗U = In, V

∗V =

Im), then for any M ∈ Fn×m,

‖UMV ‖2←2 = ‖M‖2←2

7. If ‖M‖α←α < 1, then det (I −M) 6= 0

8. For matrices A,B,C of appropriate dimensions,

‖AB‖α←γ ≤ ‖A‖α←β ‖B‖β←γ

‖A + C‖α←γ ≤ ‖A‖α←γ + ‖C‖α←γ

9. Deleting rows and/or columns does not increase ‖·‖p←p. Specif-

ically, for matrices A,B,C of appropriate dimensions,

∥
∥
∥
∥

[

A B
]∥
∥
∥
∥
p←p

≥ ‖A‖p←p ,

∥
∥
∥
∥
∥
∥
∥






A

C






∥
∥
∥
∥
∥
∥
∥

p←p

≥ ‖A‖p←p
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Linear Algebra Schur Decomposition

Theorem: Given a matrix A ∈ Cn×n. There exists a matrix

Q ∈ Cn×n with

• Q∗Q = In, and

• Q∗AQ =: Λ upper triangular.

Remarks:

1. Proof is straightforward – induction along with Gram-Schmidt

Orthonormalization process.

2. The matrix Q has orthonormal rows and columns (since Q∗Q =

QQ∗ = In)

3. Since Q∗AQ is upper triangular, the eigenvalues of Q∗AQ are

the diagonal entries.

4. In this case, Q−1 = Q∗, so the eigenvalues of Q∗AQ are the

same as the eigenvalues of A. The order that the eigenvalues

appear is arbitrary (they can be sorted in any order). This will

be clear from the proof.

5. The Matlab command schur computes (reliably and quickly)

a Schur decomposition.
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Linear Algebra Schur Decomposition (proof)

Note that the theorem is true for 1× 1 matrices, ie., n = 1, simply

take Q := 1, and Λ = A.

Now, suppose that the theorem statement is true for n = k, ie., sup-

pose it is true for k×k matrices. Furthermore, let A ∈ F(k+1)×(k+1).

Let v ∈ Ck+1 be an eigenvector of A, with corresponding eigenvalue

λ ∈ C (possible since every matrix has at least one eigenvalue). By

definition, v 6= 0k+1, and hence we can (by dividing) assume that

v∗v = 1. Now, using the Gram-Schmidt orthogonalization proce-

dure, choose vectors v1, v2, . . . , vk each in Ck+1 such that

{v, v1, v2, . . . , vk}
is a set of mutually orthonormal vectors. Stack these into a square,

(k + 1)× (k + 1) matrix V := [v v1 v2 · · · vk].

Note that V ∗V = Ik+1. Moreover, there is a matrix Γ ∈ Ck×k, and
a vector w ∈ Ck such that

AV = V






λ w∗

0 Γ






By then induction hypothesis, since Γ is of dimension k, there is a

matrix P ∈ Ck×k and upper triangular Ψ ∈ Ck×k with P ∗P = Ik
and P ∗ΓP = Ψ. Hence, we have





1 0

0 P ∗




V ∗AV






1 0

0 P




 =






1 0

0 P ∗











λ w∗

0 Γ











1 0

0 P




 =






λ w∗P
0 Ψ






which is indeed upper triangular. Moreover

Q := V






1 0

0 P






has Q∗Q = Ik+1 as desired. ]

ME 234, UC Berkeley, Spring 2003, Packard

85



Linear Algebra Symmetric, Hermitian, Normal Matrices

Definition: The set of real, symmetric n× n matrices is denoted

Sn×n, and defined as

Sn×n :=
{

M ∈ Rn×n : MT = M
}

Definition: The set of complex, Hermitian n × n matrices is

denoted Hn×n, and defined as

Hn×n :=
{

M ∈ Cn×n : M ∗ = M
}

Definition: The set of complex, normal n×n matrices is denoted

N n×n, and defined as

N n×n :=
{

M ∈ Cn×n : M ∗M = MM ∗}

Note that

Sn×n ⊂ Hn×n ⊂ N n×n
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Linear Algebra Symmetric, Hermitian, Normal Matrices

Fact: Hermitian matrices have real eigenvalues:

Proof: Let λ ∈ C be an eigenvalue of a Hermitian matrix M =

M ∗, and let v 6= 0n be a corresponding eigenvector, so that Mv =

λv.

Note that

2Re (λ) ‖v‖2 = λ ‖v‖2 + λ̄ ‖v‖2

= v∗(λv) + (λv)∗v
= v∗Mv + (Mv)∗ v
= v∗Mv + v∗M ∗v
= v∗Mv + v∗Mv using M = M ∗

= 2v∗Mv

= 2λ ‖v‖2

Since v 6= 0n, the norm is positive, divide out leaving

Re (λ) = λ

as desired.

Remark: If M ∈ Hn×n, the eigenvalues of M are real, and can

be ordered

λ1 ≥ λ2 ≥ · · · ≥ λn

and it makes sense to write

λmax(M) and λmin(M)

without confusion
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Linear Algebra Symmetric, Hermitian, Normal Matrices

Fact: An upper triangular, normal matrix is actually diagonal.

Check it out...

Fact: Given Q ∈ Cn×n satisfying Q∗Q = In, then for any M ∈
Cn×n,

M ∈ N ⇔ Q∗MQ ∈ N
The proof is simple:

M ∗M = MM ∗ ↔ Q∗ (M ∗M)Q = Q∗ (MM ∗)Q
↔ Q∗M ∗MQ = Q∗MM ∗Q
↔ Q∗M ∗QQ∗

︸ ︷︷ ︸

I

MQ = Q∗M QQ∗
︸ ︷︷ ︸

I

M ∗Q

↔ Q∗M ∗QQ∗MQ = Q∗MQQ∗M ∗Q
↔ (Q∗MQ)∗Q∗MQ = Q∗MQ (Q∗MQ)∗

Hence,

Fact: A normal matrix M has an orthonormal set of eigenvectors,

ie., there exists a matrices Q,Λ ∈ Cn×n with

• Q∗Q = In,

• Λ diagonal

• M = QΛQ∗
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Linear Algebra Symmetric and Hermitian Matrices

If M = M ∗, then

{x∗Mx : ‖x‖2 = 1} = [λmin(M), λmax(M)]

Proof: Basic idea:

• Let QΛQ∗ = M be a Schur decomposition of M

• Since M = M ∗, Λ is diagonal and real

• Notate ξ := Q∗x, noting ‖Qξ‖2 = ‖ξ‖2 for all ξ,

Then

{x∗Mx : ‖x‖2 = 1} = {x∗QΛQ∗x : ‖x‖2 = 1}

= {ξ∗Λξ : ‖Qξ‖2 = 1}

= {ξ∗Λξ : ‖ξ‖2 = 1}

=
{
∑n
i=1 λi |ξi|2 :

∑n
i=1 |ξi|2 = 1

}

For any α ∈ [0, 1], define

ξ1 :=
√
α, ξ2 = ξ3 = · · · = ξn+1 = 0, ξn :=

√
1− α

yielding
n∑

i=1
λi |ξi|2 = αλ1 + (1− α)λn

which shows by proper choice of α, anything in between λ1 and λn
can be achieved.

Warning: Take M = M ∗. Then

{x∗Mx : ‖x‖2 ≤ 1} 6= [λmin(M), λmax(M)]
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Linear Algebra ‖M‖2←2

Now, return to expression for ‖M‖2←2.

‖M‖2
2←2 := max

‖x‖≤1
‖Mx‖2

= max
‖x‖=1

‖Mx‖2

= max
‖x‖=1

x∗M ∗Mx

= λmax (M
∗M)

Hence, ‖M‖2←2 is often denoted by σ̄ (M), called the maximum

singular value of M . Since the nonzero eigenvalues of AB equal

the nonzero eigenvalues of BA, it follows that

σ̄ (M) = σ̄ (M ∗)
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Linear Algebra Definite Hermitian (and Symmetric) Matrices

Definition: A matrix M ∈ Hn×n is

1. positive definite (denoted M Â 0) if u∗Mu > 0 for every

u ∈ Cn, u 6= 0n.

2. positive semi-definite (denoted M º 0) if u∗Mu ≥ 0 for every

u ∈ Cn.

3. negative definite (denoted M ≺ 0) if u∗Mu < 0 for every

u ∈ Cn, u 6= 0n.

4. negative semi-definite (denoted M ¹ 0) if u∗Mu ≤ 0 for

every u ∈ Cn.

For A,B ∈ Hn×n, write A ¹ B if A − B ¹ 0. Similarly for ≺,Â
and º.

Easy Facts:

1. If A ¹ B and B ¹ A, then indeed, A = B. If A ¹ B and

C ¹ D, then A + C ¹ B + D.

2. L ∈ Fn×n invertible, M ∈ Hn×n, then

M Â 0 ⇔ L∗ML Â 0

3. L ∈ Fn×m full column rank (so n ≥ m), M ∈ Hn×n, then

M Â 0 ⇒ L∗ML Â 0

4. For any W ∈ Fn×m, W ∗W º 0.

5. For any W ∈ Fn×m, if rankW = m, then W ∗W Â 0.

6. M Â 0 if and only if λmin(M) > 0.
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7. If M ∈ Hn×n, then M ≺ 0 ⇔ (−M) Â 0

8. If A1, A2 ∈ Hn×n, A1 Â 0, A2 Â 0, then for each t ∈ [0, 1],

(1− t)A1 + tA2 Â 0

9. Given X ∈ Hn×n, Z ∈ Hm×m and Y ∈ Fn×m,





X Y

Y ∗ Z




 Â 0 ⇒ X Â 0, Z Â 0

10. σ̄ (·) bounds are easily converted into definiteness relations. For

any matrix M ∈ Cn×m,

σ̄ (M) < β ⇔ M ∗M − β2Im ≺ 0

⇔ MM ∗ − β2In ≺ 0

⇔ σ̄ (M ∗) < β

11. If M is invertible, and M ∗ = M , then M Â 0 if and only if

M−1 Â 0.

12. Warning: If M 6= M ∗, then M having positive, real eigen-

values does not guarantee x∗Mx > 0. Instead, check M +M ∗,
since it is Hermitian, and x∗Mx = 1

2x
∗ (M + M ∗)x. For ex-

ample,

M =






1 10

0 1






13. If M +M ∗ ≺ 0, then eigenvalues of M have negative real-part

14. If M = M ∗ ≺ 0, then for any ∆ = ∆∗, there is an ε > 0 such

that M + t∆ ≺ 0 for all |t| < ε.

ME 234, UC Berkeley, Spring 2003, Packard

92



Linear Algebra S-procedure

Theorem: Let Ti
k
i=0 be a family of matrices, with each Ti ∈ Cn×n,

and T ∗i = Ti. If there exist scalars {di}ki=1 with di ≥ 0, and

T0 −
k∑

i=1
diTi Â 0

then for all x ∈ Cn which satisfy x∗Tix > 0 for 1 ≤ i ≤ k, it

follows that x∗T0x > 0.

Proof: Let x ∈ Cn satisfy x∗Tix > 0 for all 1 ≤ i ≤ k. Hence,

x 6= 0. By hypothesis, we have

x∗


T0 −
k∑

i=1
diTi



 x > 0

which implies

x∗T0x >
k∑

i=1
dix
∗Tix ≥ 0

as desired. ]

Remark: Easily replace > with ≥ in above statement.
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Linear Algebra Singular Value Decomposition (SVD)

Theorem: Given M ∈ Fn×m. Then there exists

• U ∈ Fn×n, with U ∗U = In,

• V ∈ Fm×m, with V ∗V = Im,

• integer 0 ≤ k ≤ min (n,m), and

• real numbers σ1 ≥ σ2 ≥ · · · ≥ σk > 0

such that

M = U






Σ 0

0 0




V ∗

where Σ ∈ Rk×k is

Σ =














σ1 0 · · · 0

0 σ2 · · · 0
... ... . . . ...

0 0 · · · σk
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Linear Algebra SVD (proof)

Proof: Clearly M ∗M ∈ Hm×m is positive semi-definite. Since it

is Hermitian, it has a full set of orthonormal eigenvectors, and the

eigenvalues are real, and nonnegative. Let {v1, v2, . . . , vm} denote

an orthonormal choice of eigenvectors, associated with the eigenval-

ues

λ1 ≥ λ2 ≥ · · · ≥ λk > λk+1 = λk+2 = · · · = λm = 0

For any 1 ≤ j ≤ m, we have

‖Mvj‖2 = v∗jM
∗Mvj

= λjv
∗
jvj

= λj

Hence, for j > k, it follows that Mvj = 0n.

For 1 ≤ j ≤ k, define σj :=
√

λj. Next, for 1 ≤ j ≤ k, define

vectors uj ∈ Fn via

uj :=
1

σj
Mvj

Note that for any 1 ≤ j, h ≤ k,

u∗huj = 1
σhσj

v∗hM
∗Mvj

= 1
σhσj

v∗h(λjvj)

=
σj
σh
v∗hvj

This implies that u∗huj = δhj. Hence the set {u1, . . . , uk} are mu-

tually orthonormal vectors in Fn. Using Gram-Schmidt, construct

vectors uk+1, . . . , un to fill this out, so

{u1, . . . , uk, uk+1, . . . , un}
is a mutually orthonormal set if vectors in Fn. Now we want to

consider u∗hMvj for 4 cases (depending on how h, j compare to k.
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• 1 ≤ h ≤ k and 1 ≤ j ≤ k. Substituting gives

u∗hMvj = 1
σh
v∗hM

∗Mvj

=
σj
σh
v∗hvl

= σhδhj

• any h, with j > k. Substituting gives

u∗hMvj = u∗h(Mvj)

= u∗h0
= 0

• h > k, and 1 ≤ j ≤ k. Substituting gives

u∗hMvj = u∗h (σjuj)
= σju

∗
huj

= 0

Defining matrices U and V with columns made up of the {uh}nh=1

and {vj}mj=1 completes the proof. ]
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Linear Algebra Matrix Square Roots

If M = M ∗ º 0, then there is a unique matrix S satisfying

• S = S∗

• S º 0 (moreover, S Â 0⇔M Â 0)

• S2 = M

S is called the Hermitian square-root of M and denoted M
1
2 .

Facts:

1. Calculating the Hermitian square root of M :

(a) Do a Schur decomposition of M , so M = QΛQ∗.

(b) Since M = M ∗, Λ is diagonal and real.

(c) Since M º 0, the diagonal entries of Λ are non-negative,

denote them as λ1, λ2, . . . , λn.

(d) Define

S := Q














√
λ1 0 · · · 0

0
√
λ2 · · · 0

... ... . . . ...

0 0 · · · √λn














Q∗

(e) Note that S = S∗ º 0, and S2 = M .

2. If M = M ∗ Â 0, then M is invertible, and M−1 is Hermitian

and positive definite. Hence it has a Hermitian square root. In

fact
(

M−1
)1

2 =
(

M
1
2

)−1

so write M−1
2 without any confusion as to its meaning.
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Linear Algebra Schur Complements

Fact: Given M ∈ Hn×n and L ∈ Cn×n, with L invertible. Then

M Â 0 ⇔ L∗ML Â 0

Fact: Given X ∈ Hn×n, Y ∈ Hm×m,





X 0

0 Y




 Â 0 ⇔ X Â 0 and Y Â 0

Fact: Given X ∈ Hn×n, Z ∈ Fn×m,





X Z

Z∗ Im




 Â 0 ⇔ X − ZZ∗ Â 0

Proof: Use L :=






In 0

−Z∗ Im




.

This leads to what is typically called the “Schur complement” the-

orem.

Fact: Given X ∈ Hn×n, Y ∈ Hm×m, Z ∈ Cn×m,





X Z

Z∗ Y




 Â 0 ⇔ Y Â 0, and X − ZY −1Z∗ Â 0

Proof: Note that if Y Â 0,






In 0

0 Y −
1
2












X Z

Z∗ Y












In 0

0 Y −
1
2





 =







X ZY −
1
2

Y −
1
2Z∗ Im
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Linear Algebra More Schur Complements

Lemma: Suppose X11 ∈ Fn×n, Y11 ∈ Fn×n, with X11 = X∗11 Â
0, and Y11 = Y ∗11 Â 0. Let r be a non-negative integer. Then

there exist X12 ∈ Fn×r, X22 ∈ Fr×r such that X22 = X∗22, and





X11 X12

X∗12 X22




 Â 0 ,






X11 X12

X∗12 X22






−1

=






Y11 ?

? ?






if and only if





X11 In
In Y11




 º 0 and rank






X11 In
In Y11




 ≤ n + r

These last two conditions are equivalent to X11 º Y −1
11 and

rank
(

X11 − Y −1
11

) ≤ r.

Proof: Apply Schur Complement and Matrix inversion Lemmas...

⇐ By assumption, there is a matrix L ∈ Fn×r such that X11 −
Y −1

11 = LL∗. Defining X12 := L, and X22 := Ir and note that
[

X11 L

L∗ Ir

]−1

=

[

(X11 − LL∗)−1 − (X11 − LL∗)−1 L

−L∗ (X11 − LL∗)−1 L∗ (X11 − LL∗)−1 L + Ir

]

=

[

Y11 ?

? ?

]

⇒ Using the matrix inversion lemma (item 1), it must be that

Y −1
11 = X11 −X12X

−1
22 X∗12.

Hence, X11 − Y −1
11 = X12X

−1
22 X∗12 º 0, and indeed,

rank
(

X11 − Y −1
11

)

= rank
(

X12X
−1
22 X∗12

)

≤ r.

The other rank condition follows because





In −Y −1
11

0 In











X11 In
In Y11











In 0

−Y −1
11 In




 =






X11 − Y −1
11 0

0 Y11
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Linear Algebra Constant Matrix Optimization

Lots of the control design algorithms we will study (H∞, for in-

stance) hinge on the following result from linear algebra:

1. Given R ∈ Fl×l, U ∈ Fl×m and V ∈ Fp×l, where m, p ≤ l.

2. We want to minimize σ̄ [R + UQV ] over Q ∈ Fm×p.

R U

Q
V

+

3. Suppose U⊥ ∈ Fl×(l−m) and V⊥ ∈ F(l−p)×l have

•
[

U U⊥
]

,






V

V⊥




 are both invertible

• U ∗U⊥ = 0m×(l−m), V V ∗⊥ = 0p×(l−p)

Then

inf
Q∈Fm×p σ̄ [R + UQV ] < 1

if and only if
V⊥ (R∗R− I)V ∗⊥ ≺ 0

U ∗⊥ (RR∗ − I)U⊥ ≺ 0

Remark: Essentially, R must be smaller than 1 on the directions

that U and V are perpendicular to.
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Linear Algebra Matrix Dilation Lemma

Matrix dilation problems are of the form:

Given a partially specified matrix - when can the unspecified

elements be chosen so that the full matrix has some property?

Already seen one type of problem. Next, we derive a main elemen-

tary matrix dilation theorem. We start simple and build...

Given A ∈ Cm×n, it is clear that

min
X∈Cq×n σ̄






X

A




 = σ̄ (A)

and this can easily be achieved by choosing X := 0. Pick some

γ > σ̄ (A). Characterize all X that give σ̄






X

A




 < γ.

Lemma: Suppose Y ∈ Fn×n is invertible. Then

{

X ∈ Fq×n : X∗X ≺ Y ∗Y
}

=
{

WY : W ∈ Fq×n, σ̄ (W ) < 1
}

Proof:

A simple chain of equivalences

X∗X ≺ Y ∗Y ⇔ X∗X − Y ∗Y ≺ 0

⇔ Y −∗ [X∗X − Y ∗Y ]Y −1 ≺ 0

⇔ Y −∗X∗XY −1 − I ≺ 0

⇔ σ̄
(

XY −1
)

< 1

⇔ σ̄ (W ) < 1 and W = XY −1

⇔ σ̄ (W ) < 1 and X = WY
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Linear Algebra Matrix Dilation Lemma (cont’d)

The lemma easily gives

Lemma: Given A ∈ Fm×n, and γ > σ̄ (A). Then





X ∈ Fq×n : σ̄






X

A




 < γ






=

{

W
(

γ2In − A∗A
)1

2 : W ∈ Fq×n, σ̄ (W ) < 1
}

Proof:

Another chain of equivalences

σ̄











X

A









 < γ ⇔ X∗X + A∗A− γ2I ≺ 0

⇔ X∗X ≺ γ2I − A∗A

⇔ X∗X ≺ (

γ2I − A∗A
)1/2 (

γ2I − A∗A
)1/2

Now apply previous Lemma.

Equivalently, for any X ∈ Fq×n and γ > σ̄ (A), we have

σ̄






X

A




 < γ ⇔ σ̄



X
(

γ2In − A∗A
)−1

2



 < 1
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Linear Algebra Matrix Dilation (cont’d)

Similarly, for B ∈ Fq×p, and γ > σ̄ (B), we have
{

X ∈ Fq×n : σ̄
[

X B
]

< γ
}

=

{
(

γ2Iq −BB∗
)1

2 W : W ∈ Fq×n, σ̄ (W ) < 1
}

Along these lines, a corollary follows:

Corollary RV: Given R ∈ Fn×n, V ∈ Ft×n, with V full row rank.

Then

min
Q∈Fn×t

σ̄ (R + QV ) = σ̄ (RV ∗⊥)

where V⊥ ∈ F(n−t)×n satisfies

V⊥V
∗
⊥ = In−t , V⊥V

∗ = 0 , det






V

V⊥




 6= 0
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Linear Algebra Proof of Corollary

Proof: let S ∈ Ft×t be invertible such that Vo := SV ∈ Ft×n

satisfies VoV
∗
o = It. Then, for any Q ∈ Fn×t, we have

R + QV = R + QS−1SV

= R + QS−1Vo

Since S is invertible, by picking Q, we equivalently have complete

freedom in picking Qo(:= QS−1). Hence

min
Q∈Fn×t

σ̄ (R + QV ) = min
Qo∈Fn×t

σ̄ (R + QoVo) =

Also,

T :=






Vo
V⊥






is a square, unitary matrix. Hence,

min
Qo∈Fn×t

σ̄ (R + QoVo) = min
Qo∈Fn×t

σ̄ ((R + QoVo)T
∗)

But (R + QoVo)T
∗ is simply

(R + QoVo)T
∗ =

[

RV ∗o + Qo RV ∗⊥
]

The minimum (over Qo) that the maximum singular value can take

on is clearly σ̄ (RV ∗⊥), which is achieved when

Qo := −RV ∗o = −RV ∗S∗

and hence
Q = QoS

= −RV ∗S∗S
= −RV ∗ (V V ∗)−1
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Linear Algebra Dilation Main Result

Given A ∈ Fm×n, B ∈ Fq×p, C ∈ Fm×p, what is

min
X∈Fq×n σ̄






X B

A C






The theorem, independently (and in many different forms) by Sara-

son, Adamjan-Arov-Krien, Sz Nagy-Foias, Davis-Kahan-Weinberger,

and Parrot is:

Theorem: Given A, B and C as above. Then

min
X∈Fq×n σ̄






X B

A C




 = max






σ̄
[

A C
]

, σ̄






B

C












Remark: X = 0 typically does not achieve the minimum cost.

Try a simple, real 2× 2 example...

Note that the 2× 2 block matrix can be written as





X B

A C




 =






0 B

A C




 +






Iq
0




X

[

In 0
]

which is a special form of the R + UQV expression.
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Linear Algebra Dilation Main Result

Theorem: Given A ∈ Fm×n, B ∈ Fq×p, C ∈ Fm×p. Then

min
X∈Fq×n σ̄






X B

A C




 = max






σ̄
[

A C
]

, σ̄






B

C












Proof: Clearly, nothing smaller than the right-hand-side is achiev-

able. Take any γ > σ̄
[

A C
]

. Then

min
X

σ̄






X B

A C




 < γ ⇐⇒ min

X
σ̄
([

X B
]

S−
1
2

)

< 1

where

S := γ2I −





A∗

C∗






[

A C
]

Hence there exists an X such that σ̄






X B

A C




 < γ if and only if

min
X

σ̄








X
︸︷︷︸

Q

[

I 0
]

S−
1
2

︸ ︷︷ ︸

V

+
[

0 B
]

S−
1
2

︸ ︷︷ ︸

R








< 1

What should V⊥ be? It needs to satisfy V⊥V ∗ = 0 and V⊥V ∗⊥ = I .

The first condition implies that

V⊥V
∗ = 0⇐⇒ V⊥S

−1
2






I

0




 = 0

so that V⊥ is of the form V⊥ =
[

0 L
]

S
1
2 for some (at this point)

arbitrary L. The second condition requires

V⊥V
∗
⊥ = I =⇒ L

(

γ2I − C∗C
)

L∗ = I

so that L =
(

γ2I − C∗C
)−1

2 is a suitable choice.
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Linear Algebra Dilation Result(cont’d)

Hence, the original equivalence continues,

minX σ̄ (QV + R) < 1 ⇐⇒ σ̄ (RV⊥) < 1

⇐⇒ σ̄
[

B
(

γ2I − C∗C
)−1

2

]

< 1

⇐⇒ σ̄






B

C




 < γ

Hence, any γ larger than both σ̄ [A C] and σ̄






B

C




 is achievable,

using, for instance

X := −B
(

γ2I − C∗C
)−1

C∗A

Moreover (though we do not explicitly use it) the minimum is

achieved (compactness argument).
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Linear Algebra Constant Matrix Optimization

Partial answer to the R + UQV problem when similarity scalings

are included:

1. Let R,U, V, U⊥ and V⊥ be given as before.

2. Let Z ⊂ Fl×l be a given set of positive definite, Hermitian

matrices

Then

inf
Q∈Fm×p
Z∈Z

σ̄
[

Z1/2 (R + UQV )Z−1/2
]

< 1

if and only if there is a Z ∈ Z such that

V⊥ (R
∗ZR− Z)V ∗⊥ ≺ 0

and

U ∗⊥
(

RZ−1R∗ − Z−1
)

U⊥ ≺ 0.
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Linear Algebra Constant Matrix Optimization

Proof: For each fixed Z ∈ Z , consider the problem

β (Z) := inf
Q∈Fr×t

σ̄
[

Z
1
2 (R + UQV )Z−

1
2

]

Define R̃ := Z
1
2RZ−

1
2 , Ũ := Z

1
2U, Ṽ = V Z−

1
2 . Note that the

columns of of Z−
1
2U⊥ span the space orthogonal to the range

(column) of Ũ , since
(

Z−
1
2U⊥

)∗
Ũ = 0. Similarly, the rows

of V⊥Z
1
2 span the space orthogonal to the range (row) of Ṽ .

Therefore, for fixed Z ∈ Z, β (Z) < α if and only if

U ∗⊥Z
−1

2

(

Z
1
2RZ−

1
2Z−

1
2R∗Z

1
2 − α2I

)

Z−
1
2U⊥ ≺ 0,

and

V⊥Z
1
2

(

Z−
1
2R∗Z

1
2Z

1
2RZ−

1
2 − α2I

)

Z
1
2V ∗⊥ ≺ 0.

These simplify to

U ∗⊥
(

RZ−1R∗ − α2Z−1
)

U⊥ ≺ 0, (1)

and

V⊥
(

R∗ZR− α2Z
)

V ∗⊥ ≺ 0 (2)

as claimed. ]
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Linear Algebra Constant Matrix Optimization

The previous results are directly useful in discrete-time problems.

Using similar techniques, the analogous theorem for definiteness can

be proven:

Theorem: Given R ∈ Fl×l, U ∈ Fl×m and V ∈ Fp×l, where

m, p ≤ l. Suppose U⊥ ∈ Fl×(l−m) and V⊥ ∈ F(l−p)×l have

•
[

U U⊥
]

,






V

V⊥




 are both invertible

• U ∗U⊥ = 0m×(l−m), V V ∗⊥ = 0p×(l−p)

Then, there exist a Q ∈ Fm×p such that

[R + UQV ] + [R + UQV ]∗ ≺ 0

if and only if

U ∗⊥ (R + R∗)U⊥ ≺ 0, V⊥ (R + R∗)V ∗⊥ ≺ 0

ME 234, UC Berkeley, Spring 2003, Packard

110



Completion of squares

Lemma: S = S∗ Â 0, T given square matrices. For every K,

−TK∗ −KT ∗ + KSK º −TS−1T ∗.

Furthermore, K0 := TS−1 achieves equality.

Proof: Complete squares as

−TK∗ −KT ∗ + KSK

=
(

KS1/2 − TS−1/2
) (

KS1/2 − TS−1/2
)∗ − TS−1T ∗

º −TS−1T ∗

Note that equality is achieved by making KS1/2 − TS−1/2 = 0,

which can be accomplished with K = TS−1.

Lemma: S = S∗ º 0, KerS ⊆ KerT . Let K0 be any solution of

the equation K0S = T . Then for every K

−TK∗−KT ∗+KSK º −TK∗0 −K0T
∗+K0SK0 (= −K0SK0)

Proof: For any K,

T (K0 −K)∗ + (K0 −K)T ∗ −K0SK∗0 + KSK

= (K0 −K)S (K0 −K)∗

º 0

To verify the equality, simply substitute for T . Also note that the

equation K0S = T may have many solutions. If K0,1 and K0,2 are

two such solutions, then by making the argument twice above, we

have

K0,1SK∗0,1 = K0,2SK∗0,2

Equivalently, TK0,1 = TK0,2.
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