
Nonlinear Systems and Control
Lecture # 9

Lyapunov Stability
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Quadratic Forms

V (x) = xT Px =
n

∑

i=1

n
∑

j=1

pijxixj , P = P T

λmin(P )‖x‖2 ≤ xT Px ≤ λmax(P )‖x‖2

P ≥ 0 (Positive semidefinite) if and only if λi(P ) ≥ 0 ∀i

P > 0 (Positive definite) if and only if λi(P ) > 0 ∀i

V (x) is positive definite if and only if P is positive definite
V (x) is positive semidefinite if and only if P is positive
semidefinite
P > 0 if and only if all the leading principal minors of P are
positive
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Linear Systems
ẋ = Ax

V (x) = xT Px, P = P T > 0

V̇ (x) = xT Pẋ + ẋT Px = xT (PA + AT P )x
def
= −xT Qx

If Q > 0, then A is Hurwitz

Or choose Q > 0 and solve the Lyapunov equation

PA + AT P = −Q

If P > 0, then A is Hurwitz

Matlab: P = lyap(A′, Q)
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Theorem A matrix A is Hurwitz if and only if for any
Q = QT > 0 there is P = P T > 0 that satisfies the
Lyapunov equation

PA + AT P = −Q

Moreover, if A is Hurwitz, then P is the unique solution

Idea of the proof: Sufficiency follows from Lyapunov’s
theorem. Necessity is shown by verifying that

P =

∫ ∞

0

exp(AT t)Q exp(At) dt

is positive definite and satisfies the Lyapunov equation
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Linearization Consider ẋ = f(x). f(x) is continuously
differentiable in D. By the mean value theorem:

fi(x) = fi(0) +
∂fi

∂x
(zi)x

with zi = αix, and 0 < αi < 1.
Let

F (x) :=







∂f1

∂x (z1)
...

∂fn

∂x (zn)






.

Then f(x) = F (x)x and F (0) = ∂f
∂x(0) = A.

ẋ = f(x) = F (x)x = [A + G(x)]x
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Linearization ẋ = f(x) = F (x)x = [A + G(x)]x. By
continuity of ∂fi

∂x
, we have

G(x) := F (x) − A → 0 as x → 0

Suppose A is Hurwitz. Choose Q = QT > 0 and solve the
Lyapunov equation PA + AT P = −Q for P . Use
V (x) = xT Px as a Lyapunov function candidate for
ẋ = f(x)

V̇ (x) = xT Pf(x) + fT (x)Px

= xT P [A + G(x)]x + xT [AT + GT (x)]Px

= xT (PA + AT P )x + 2xT PG(x)x

= −xT Qx + 2xT PG(x)x
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V̇ (x) ≤ −xT Qx + 2‖P‖ ‖G(x)‖ ‖x‖2

For any γ > 0, there exists r > 0 such that

‖G(x)‖ < γ, ∀ ‖x‖ < r

xT Qx ≥ λmin(Q)‖x‖2 ⇔ −xT Qx ≤ −λmin(Q)‖x‖2

V̇ (x) < −[λmin(Q) − 2γ‖P‖]‖x‖2, ∀ ‖x‖ < r

Choose

γ <
λmin(Q)

2‖P‖
V (x) = xT Px is a Lyapunov function for ẋ = f(x)

– p.7/16



We can use V (x) = xT Px to estimate the region of
attraction

Suppose V̇ (x) < 0, ∀ 0 < ‖x‖ < r

Take c = min
‖x‖=r

xT Px = λmin(P )r2

{xT Px < c} ⊂ {‖x‖ < r}
All trajectories starting in the set {xT Px < c} approach the
origin as t tends to ∞.
Hence, the set {xT Px < c} is a subset of the region of
attraction (an estimate of the region of attraction)
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Example

ẋ1 = −x2

ẋ2 = x1 + (x2

1
− 1)x2

A =
∂f

∂x

∣

∣

∣

∣

x=0

=

[

0 −1

1 −1

]

has eigenvalues (−1 ± j
√

3)/2. Hence the origin is
asymptotically stable

Take Q = I, PA+AT P = −I ⇒ P =

[

1.5 −0.5

−0.5 1

]

λmin(P ) = 0.691
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V (x) = xT Px = 1.5x2

1
− x1x2 + x2

2

V̇ (x) = (3x1 − x2)(−x2) + (−x1 + 2x2)[x1 + (x2

1
− 1)x2]

= −(x2

1
+ x2

2
) − (x3

1
x2 − 2x2

1
x2

2
)

V̇ (x) ≤ −‖x‖2+|x1| |x1x2| |x1−2x2| ≤ −‖x‖2+

√
5

2
‖x‖4

where |x1| ≤ ‖x‖, |x1x2| ≤ 1

2
‖x‖2, |x1 − 2x2| ≤

√
5‖x‖

V̇ (x) < 0 for 0 < ‖x‖2 <
2

√
5

def
= r2

Take c = λmin(P )r2 = 0.691 × 2
√

5
= 0.618

{V (x) < c} is an estimate of the region of attraction
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Example:
ẋ = −g(x)

g(0) = 0; xg(x) > 0, ∀ x 6= 0 and x ∈ (−a, a)

V (x) =

∫ x

0

g(y) dy

V̇ (x) =
∂V

∂x
[−g(x)] = −g2(x) < 0, ∀ x ∈ (−a, a), x 6= 0

The origin is asymptotically stable

If xg(x) > 0 for all x 6= 0, use

V (x) = 1

2
x2 +

∫ x

0

g(y) dy
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V (x) = 1

2
x2 +

∫ x

0

g(y) dy

is positive definite for all x and radially unbounded since
V (x) ≥ 1

2
x2

V̇ (x) = −xg(x) − g2(x) < 0, ∀ x 6= 0

The origin is globally asymptotically stable
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Example: Pendulum equation without friction

ẋ1 = x2

ẋ2 = − a sin x1

V (x) = a(1 − cos x1) + 1

2
x2

2

V (0) = 0 and V (x) is positive definite over the domain
−2π < x1 < 2π

V̇ (x) = aẋ1 sin x1 + x2ẋ2 = ax2 sin x1 − ax2 sin x1 = 0

The origin is stable

Since V̇ (x) ≡ 0, the origin is not asymptotically stable
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Example: Pendulum equation with friction

ẋ1 = x2

ẋ2 = − a sin x1 − bx2

V (x) = a(1 − cos x1) +
1

2
x2

2

V̇ (x) = aẋ1 sin x1 + x2ẋ2 = − bx2

2

The origin is stable

V̇ (x) is not negative definite because V̇ (x) = 0 for x2 = 0

irrespective of the value of x1
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The conditions of Lyapunov’s theorem are only sufficient.
Failure of a Lyapunov function candidate to satisfy the
conditions for stability or asymptotic stability does not mean
that the equilibrium point is not stable or asymptotically
stable. It only means that such stability property cannot be
established by using this Lyapunov function candidate

Try

V (x) = 1

2
xT Px + a(1 − cos x1)

= 1

2
[x1 x2]

[

p11 p12

p12 p22

] [

x1

x2

]

+ a(1 − cos x1)

p11 > 0, p11p22 − p2

12
> 0

– p.15/16



V̇ (x) = (p11x1 + p12x2 + a sin x1) x2

+ (p12x1 + p22x2) (−a sin x1 − bx2)

= a(1 − p22)x2 sin x1 − ap12x1 sin x1

+ (p11 − p12b) x1x2 + (p12 − p22b) x2

2

p22 = 1, p11 = bp12 ⇒ 0 < p12 < b, Take p12 = b/2

V̇ (x) = − 1

2
abx1 sin x1 − 1

2
bx2

2

D = {x ∈ R2 | |x1| < π}

V (x) is positive definite and V̇ (x) is negative definite over D
The origin is asymptotically stable

Read about the variable gradient method in the textbook
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