Nonlinear Systems and Control Lecture # 8 Lyapunov Stability

Let V(x) be a continuously differentiable function defined in a domain $D\subset R^n$; $0\in D$. The derivative of V along the trajectories of $\dot x=f(x)$ is

$$egin{array}{lll} \dot{V}(x) &=& \displaystyle\sum_{i=1}^{n} rac{\partial V}{\partial x_{i}} \dot{x}_{i} &=& \displaystyle\sum_{i=1}^{n} rac{\partial V}{\partial x_{i}} f_{i}(x) \ &=& \displaystyle\left[egin{array}{c} rac{\partial V}{\partial x_{1}}, & rac{\partial V}{\partial x_{2}}, & \ldots, & rac{\partial V}{\partial x_{n}} \end{array}
ight] egin{array}{c} f_{1}(x) \ f_{2}(x) \ dots \ f_{n}(x) \end{array}
ight] \ &=& \displaystyle\left[rac{\partial V}{\partial x} f(x) =: L_{f} V(x) \end{array}
ight.$$

It is the Lie Derivative of $oldsymbol{V}$ with respect to f or along f

If $\phi(t;x)$ is the solution of $\dot{x}=f(x)$ that starts at initial state x at time t=0, then

$$\dot{V}(x) = \left.rac{d}{dt}V(\phi(t;x))
ight|_{t=0}$$

If $\dot{V}(x)$ is negative, V will decrease along the solution of $\dot{x}=f(x)$

If $\dot{V}(x)$ is positive, V will increase along the solution of $\dot{x}=f(x)$

Lyapunov's Theorem:

• If there is V(x) such that

$$V(0)=0$$
 and $V(x)>0, \quad \forall \ x\in D\setminus\{0\}$

$$\dot{V}(x) \leq 0, \quad \forall \ x \in D$$

then the origin is a stable

Moreover, if

$$\dot{V}(x) < 0, \quad \forall \ x \in D \setminus \{0\}$$

then the origin is asymptotically stable

• Furthermore, if V(x) > 0, $\forall x \neq 0$,

$$||x|| \to \infty \implies V(x) \to \infty$$

and $\dot{V}(x) < 0, \, \forall \, x \neq 0,$ then the origin is globally asymptotically stable

Proof:

$$egin{aligned} 0 < r \leq arepsilon, \; B_r = \{\|x\| \leq r\} \ & lpha = \min_{\|x\| = r} V(x) > 0 \ & 0 < eta < lpha \ & \Omega_eta = \{x \in B_r \, | \, V(x) \leq eta \} \ & \|x\| \leq \delta \; \Rightarrow \; V(x) < eta \end{aligned}$$

$$\|x\| \leq \delta \; \Rightarrow \; V(x) < eta, \, ext{i.e.,} \, B_\delta \subset \Omega_eta$$

Why?

Since V(x) is continuous and V(0) = 0, $\forall \beta$, $\exists \delta'$ such that

$$||x-0|| < \delta' \Rightarrow ||V(x)-V(0)|| < \beta$$

Then Ω_{β} is in the interior of B_r . Why?

(Proof by contradiction): Suppose not, i.e., Ω_{β} is not in the interior of B_r . \exists a point $p \in \Omega_{\beta}$ that lies on ∂B_r . At p, $V(p) \geq \alpha = \min_{\|x\|=r} V(x) > \beta$ (by definition of β), which is a contradiction ($\forall x \in \Omega_{\beta}, V(x) \leq \beta$).

Solutions starting in Ω_eta stay in Ω_eta because $\dot{V}(x) \leq 0$ in Ω_eta

$$egin{aligned} x(0) \in B_{\delta} \Rightarrow x(0) \in \Omega_{eta} \Rightarrow x(t) \in \Omega_{eta} \Rightarrow x(t) \in B_r \ & \|x(0)\| < \delta \Rightarrow \|x(t)\| < r \leq arepsilon, \ orall \ t \geq 0 \ & \Rightarrow \ ext{The origin is stable} \end{aligned}$$

Now suppose $\dot{V}(x) < 0 \ \forall \ x \in D \setminus \{0\}.$ V(x(t)) is monotonically decreasing and $V(x(t)) \geq 0$

$$\lim_{t\to\infty}V(x(t))=c\geq 0$$

$$\lim_{t o \infty} V(x(t)) = c \geq 0$$
 Show that $c = 0$

Suppose c>0. By continuity of V(x), there is d>0 such that $B_{+}\subset\Omega$. Then m(t) lies outside B_{+} for all t>0.

that $B_d \subset \Omega_c$. Then, x(t) lies outside B_d for all $t \geq 0$

$$\gamma = -\max_{d \leq \|x\| \leq r} \dot{V}(x)$$

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(au)) \ d au \le V(x(0)) - \gamma t$$

This inequality contradicts the assumption c>0

⇒ The origin is asymptotically stable

The condition $||x|| \to \infty \Rightarrow V(x) \to \infty$ implies that the set $\Omega_c = \{x \in R^n \mid V(x) \le c\}$ is compact for every c > 0. This is so because for any c > 0, there is r > 0 such that V(x) > c whenever ||x|| > r. Thus, $\Omega_c \subset B_r$. All solutions starting Ω_c will converge to the origin. For any point $p \in R^n$, choosing c = V(p) ensures that $p \in \Omega_c$

⇒ The origin is globally asymptotically stable

Terminology

$V(0) = 0, \ V(x) \ge 0 \ { m for} \ x \ne 0$	Positive semidefinite
$V(0) = 0, \ V(x) > 0 \ { m for} \ x eq 0$	Positive definite
$V(0)=0,\;V(x)\leq 0\;{ m for}\;x eq 0$	Negative semidefinite
$V(0) = 0, \ V(x) < 0 \text{ for } x \neq 0$	Negative definite
$ x o \infty \Rightarrow V(x) o \infty$	Radially unbounded

Lyapunov' Theorem: The origin is stable if there is a continuously differentiable positive definite function V(x) so that $\dot{V}(x)$ is negative semidefinite, and it is asymptotically stable if $\dot{V}(x)$ is negative definite. It is globally asymptotically stable if the conditions for asymptotic stability hold globally and V(x) is radially unbounded

A continuously differentiable function V(x) satisfying the conditions for stability is called a *Lyapunov function*. The surface V(x)=c, for some c>0, is called a *Lyapunov surface* or a *level surface*

Why do we need the radial unboundedness condition to show global asymptotic stability?

It ensures that $\Omega_c = \{x \in R^n \mid V(x) \leq c\}$ is bounded for every c > 0

Without it Ω_c might not bounded for large c

Example

$$V(x) = rac{x_1^2}{1+x_1^2} + x_2^2$$

