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Lyapunov Stability
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Let V (x) be a continuously differentiable function defined in
a domain D ⊂ Rn; 0 ∈ D. The derivative of V along the
trajectories of ẋ = f(x) is
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ẋi =

n
∑

i=1

∂V

∂xi

fi(x)

=
[

∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]













f1(x)

f2(x)
...

fn(x)













=
∂V

∂x
f(x) =: LfV (x)

It is the Lie Derivative of V with respect to f or along f
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If φ(t; x) is the solution of ẋ = f(x) that starts at initial
state x at time t = 0, then

V̇ (x) =
d

dt
V (φ(t; x))

∣

∣

∣

∣

t=0

If V̇ (x) is negative, V will decrease along the solution of
ẋ = f(x)

If V̇ (x) is positive, V will increase along the solution of ẋ =

f(x)
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Lyapunov’s Theorem:

If there is V (x) such that

V (0) = 0 and V (x) > 0, ∀ x ∈ D \ {0}

V̇ (x) ≤ 0, ∀ x ∈ D

then the origin is a stable

Moreover, if

V̇ (x) < 0, ∀ x ∈ D \ {0}

then the origin is asymptotically stable
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Furthermore, if V (x) > 0, ∀ x 6= 0,

‖x‖ → ∞ ⇒ V (x) → ∞

and V̇ (x) < 0, ∀ x 6= 0, then the origin is globally
asymptotically stable

Proof: D
B

r

Ωβ

Bδ

0 < r ≤ ε, Br = {‖x‖ ≤ r}

α = min
‖x‖=r

V (x) > 0

0 < β < α

Ωβ = {x ∈ Br | V (x) ≤ β}

‖x‖ ≤ δ ⇒ V (x) < β
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‖x‖ ≤ δ ⇒ V (x) < β, i.e., Bδ ⊂ Ωβ

Why?
Since V (x) is continuous and V (0) = 0, ∀β, ∃δ′ such that

‖x − 0‖ < δ′ ⇒ ‖V (x) − V (0)‖ < β

Then Ωβ is in the interior of Br. Why?
(Proof by contradiction): Suppose not, i.e., Ωβ is not in the
interior of Br. ∃ a point p ∈ Ωβ that lies on ∂Br. At p,
V (p) ≥ α = min‖x‖=r V (x) > β (by definition of β),
which is a contradiction (∀x ∈ Ωβ, V (x) ≤ β).
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Solutions starting in Ωβ stay in Ωβ because V̇ (x) ≤ 0 in Ωβ

x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br

‖x(0)‖ < δ ⇒ ‖x(t)‖ < r ≤ ε, ∀ t ≥ 0

⇒ The origin is stable

Now suppose V̇ (x) < 0 ∀ x ∈ D \ {0}.
V (x(t)) is monotonically decreasing and V (x(t)) ≥ 0

lim
t→∞

V (x(t)) = c ≥ 0

lim
t→∞

V (x(t)) = c ≥ 0 Show that c = 0

Suppose c > 0. By continuity of V (x), there is d > 0 such

that Bd ⊂ Ωc. Then, x(t) lies outside Bd for all t ≥ 0
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γ = − max
d≤‖x‖≤r

V̇ (x)

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ )) dτ ≤ V (x(0)) − γt

This inequality contradicts the assumption c > 0

⇒ The origin is asymptotically stable

The condition ‖x‖ → ∞ ⇒ V (x) → ∞ implies that the
set Ωc = {x ∈ Rn | V (x) ≤ c} is compact for every c > 0.
This is so because for any c > 0, there is r > 0 such that
V (x) > c whenever ‖x‖ > r. Thus, Ωc ⊂ Br.
All solutions starting Ωc will converge to the origin. For any
point p ∈ Rn, choosing c = V (p) ensures that p ∈ Ωc

⇒ The origin is globally asymptotically stable
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Terminology
V (0) = 0, V (x) ≥ 0 for x 6= 0 Positive semidefinite
V (0) = 0, V (x) > 0 for x 6= 0 Positive definite
V (0) = 0, V (x) ≤ 0 for x 6= 0 Negative semidefinite
V (0) = 0, V (x) < 0 for x 6= 0 Negative definite

‖x‖ → ∞ ⇒ V (x) → ∞ Radially unbounded

Lyapunov’ Theorem: The origin is stable if there is a
continuously differentiable positive definite function V (x) so
that V̇ (x) is negative semidefinite, and it is asymptotically
stable if V̇ (x) is negative definite. It is globally
asymptotically stable if the conditions for asymptotic
stability hold globally and V (x) is radially unbounded
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A continuously differentiable function V (x) satisfying the
conditions for stability is called a Lyapunov function.
The surface V (x) = c, for some c > 0, is called a
Lyapunov surface or a level surface

V (x) = c 1

c 2

c 3

c 1<c 2<c 3
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Why do we need the radial unboundedness condition to
show global asymptotic stability?
It ensures that Ωc = {x ∈ Rn | V (x) ≤ c} is bounded for
every c > 0
Without it Ωc might not bounded for large c

Example

V (x) =
x2
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