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Lecture # 7

Stability of Equilibrium Points
Basic Concepts & Linearization
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ẋ = f(x)

f is locally Lipschitz over a domain D ⊂ Rn

Suppose x̄ ∈ D is an equilibrium point; that is, f(x̄) = 0

Characterize and study the stability of x̄

For convenience, we state all definitions and theorems for
the case when the equilibrium point is at the origin of Rn;
that is, x̄ = 0. No loss of generality

y = x − x̄

ẏ = ẋ = f(x) = f(y + x̄)
def
= g(y), where g(0) = 0
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Definition: The equilibrium point x = 0 of ẋ = f(x) is

stable if for each ε > 0 there is δ > 0 (dependent on ε)
such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0

unstable if it is not stable

asymptotically stable if it is stable and δ can be chosen
such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0
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First-Order Systems (n = 1)

The behavior of x(t) in the neighborhood of the origin can
be determined by examining the sign of f(x)

The ε–δ requirement for stability is violated if xf(x) > 0 on
either side of the origin
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The origin is stable if and only if xf(x) ≤ 0 in some
neighborhood of the origin
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The origin is asymptotically stable if and only if xf(x) < 0
in some neighborhood of the origin

f(x)

x−a b

f(x)

x
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Asymptotically Stable Globally Asymptotically Stable
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Definition: Let the origin be an asymptotically stable
equilibrium point of the system ẋ = f(x), where f is a
locally Lipschitz function defined over a domain D ⊂ Rn

( 0 ∈ D)

The region of attraction (also called region of
asymptotic stability, domain of attraction, or basin) is the
set of all points x0 in D such that the solution of

ẋ = f(x), x(0) = x0

is defined for all t ≥ 0 and converges to the origin as t

tends to infinity

The origin is said to be globally asymptotically stable if
the region of attraction is the whole space Rn
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Second-Order Systems (n = 2)

Type of equilibrium point Stability Property
Center

Stable Node
Stable Focus

Unstable Node
Unstable Focus

Saddle
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Example: Tunnel Diode Circuit

x ’ = 0.5 ( − 17.76 x + 103.79 x2 − 229.62 x3 + 226.31 x4 − 83.72 x5 + y)
y ’ = 0.2 ( − x − 1.5 y + 1.2)                                               
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Example: Pendulum Without Friction

x ’ = y          
y ’ = − 10 sin(x)
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Example: Pendulum With Friction

x ’ = y              
y ’ = − 10 sin(x) − y
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Linear Time-Invariant Systems

ẋ = Ax

x(t) = exp(At)x(0)

P −1AP = J = block diag[J1, J2, . . . , Jr]

Ji =























λi 1 0 . . . . . . 0

0 λi 1 0 . . . 0
... . . . ...
... . . . 0
... . . . 1

0 . . . . . . . . . 0 λi























m×m
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exp(At) = P exp(Jt)P −1 =
r

∑

i=1

mi
∑

k=1

tk−1 exp(λit)Rik

mi is the order of the Jordan block Ji

Re[λi] < 0 ∀ i ⇔ Asymptotically Stable

Re[λi] > 0 for some i ⇒ Unstable

Re[λi] ≤ 0 ∀ i & mi > 1 for Re[λi] = 0 ⇒ Unstable

Re[λi] ≤ 0 ∀ i & mi = 1 for Re[λi] = 0 ⇒ Stable

If an n × n matrix A has a repeated eigenvalue λi of
algebraic multiplicity qi, then the Jordan blocks of λi have
order one if and only if rank(A − λiI) = n − qi
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Theorem: The equilibrium point x = 0 of ẋ = Ax is stable if
and only if all eigenvalues of A satisfy Re[λi] ≤ 0 and for
every eigenvalue with Re[λi] = 0 and algebraic multiplicity
qi ≥ 2, rank(A − λiI) = n − qi, where n is the dimension
of x. The equilibrium point x = 0 is globally asymptotically
stable if and only if all eigenvalues of A satisfy Re[λi] < 0

When all eigenvalues of A satisfy Re[λi] < 0, A is called a
Hurwitz matrix

When the origin of a linear system is asymptotically stable,
its solution satisfies the inequality

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀ t ≥ 0

k ≥ 1, λ > 0
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Exponential Stability

Definition: The equilibrium point x = 0 of ẋ = f(x) is said
to be exponentially stable if

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀ t ≥ 0

k ≥ 1, λ > 0, for all ‖x(0)‖ < c

It is said to be globally exponentially stable if the inequality
is satisfied for any initial state x(0)

Exponential Stability ⇒ Asymptotic Stability

– p. 15/19



Example
ẋ = −x3

The origin is asymptotically stable

x(t) =
x(0)

√

1 + 2tx2(0)

x(t) does not satisfy |x(t)| ≤ ke−λt|x(0)| because

x(t)| ≤ ke−λt|x(0)| ⇒
e2λt

1 + 2tx2(0)
≤ k2

Impossible because lim
t→∞

e2λt

1 + 2tx2(0)
= ∞
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Linearization
ẋ = f(x), f(0) = 0

f is continuously differentiable over D = {‖x‖ < r}

J(x) =
∂f

∂x
(x)

h(σ) = f(σx) for 0 ≤ σ ≤ 1

h′(σ) = J(σx)x

h(1) − h(0) =

∫ 1

0

h′(σ) dσ, h(0) = f(0) = 0

f(x) =

∫ 1

0

J(σx) dσ x
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f(x) =

∫ 1

0

J(σx) dσ x

Set A = J(0) and add and subtract Ax

f(x) = [A+G(x)]x, where G(x) =

∫ 1

0

[J(σx)−J(0)] dσ

G(x) → 0 as x → 0

This suggests that in a small neighborhood of the origin we
can approximate the nonlinear system ẋ = f(x) by its
linearization about the origin ẋ = Ax
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Theorem:

The origin is exponentially stable if and only if
Re[λi] < 0 for all eigenvalues of A

The origin is unstable if Re[λi] > 0 for some i

Linearization fails when Re[λi] ≤ 0 for all i, with
Re[λi] = 0 for some i

Example
ẋ = ax3

A =
∂f

∂x

∣

∣

∣

∣

x=0

= 3ax2
∣

∣

x=0
= 0

Stable if a = 0; Asymp stable if a < 0; Unstable if a > 0
When a < 0, the origin is not exponentially stable
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