Nonlinear Systems and Control
Lecture# 7/

Stability of Equilibrium Points

Basic Concepts & Linearization



o i = f(a)

f 1s locally Lipschitz over a domain D C R"™
Suppose x € D is an equilibrium point; that is, f(x) = 0
Characterize and study the stability of x

For convenience, we state all definitions and theorems for
the case when the equilibrium point is at the origin of R™;
that iIs, z = 0. No loss of generality

Yy=x— =T

=i = f@) = fu+2) L), whereg(0) =0
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fDefinition: The equilibrium pointx = 0of & = f(x) IS

# stable if for each e > 0 thereis 6 > 0 (dependent on ¢)
such that

|lz(0)]| < d = |[z(?)]| <e, V>0
® unstable if it iIs not stable

# asymptotically stable if it is stable and é can be chosen
such that

|lz(0)|| < 6 = tlim x(t) =0
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f First-Order Systems (n = 1)

The behavior of x(t) in the neighborhood of the origin can
be determined by examining the sign of f(x)

The -6 requirement for stability is violated if z f(x) > 0 on
either side of the origin

0 / \m / o
a8 VAR

L Unstable Unstable Unstable
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fThe origin is stable if and only iIf zf(x) < 0in some
neighborhood of the origin

f(x) f(x) f(x)

Stable Stable Stable
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fThe origin is asymptotically stable if and only if z f(x) < 0
In some neighborhood of the origin

\

/ /
F(X) ()

(@) (b)

LAsymptoticaIIy Stable Globally Asymptotically Stable
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fDefinition: Let the origin be an asymptotically stable
equilibrium point of the system & = f(x), where fis a
locally Lipschitz function defined over a domain D C R"
(0 € D)

# The region of attraction (also called region of
asymptotic stability, domain of attraction, or basin) is the
set of all points xg in D such that the solution of

= f(x), =x(0)=xg

Is defined for all ¢ > 0 and converges to the origin as ¢
tends to infinity

# The origin is said to be globally asymptotically stable if
L the region of attraction is the whole space R"
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Second-Order Systems (n = 2)

Type of equilibrium point

Stability Property

Center

Stable Node

Stable Focus

Unstable Node

Unstable Focus

Saddle
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~ Example: Tunnel Diode Circuit

X' =05 (- 17.76 x + 103.79 X* - 229.62 X° + 226.31 x* - 83.72 X° +)
y'=02(-x-15y+1.2)
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Cursor position: (1.02, -0.90%)
| The second unstable trajectory --+ 3 possible eq. pt. near (0063, 0767, |
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~ Example: Pendulum Without Friction




~ Example: Pendulum With Friction

X'=y
y'=-10sin(x) -y

Cursor position: (-0.762, -13.7)

| The backward orbit from (-3, 00237 left the computation window, |
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fLinear Time-Invariant Systems

P~ 'AP = J = block diag[J1, J2, . . ., Jy]

A
0

x(t) = exp(At)x(0)

1
A

r = Ax

0
1

0

0
0

e )

>

mXxm
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r m; -
|7 exp(At) = Pexp(Jt)P~ ! = S: S: t* =L exp(\;t) Rix
1=1 k=1

m; IS the order of the Jordan block .J;

Re[A;] < 0 Vi <& Asymptotically Stable

Re[\;] > 0 forsome: = Unstable
Re[)\;] <0 Vi & m; > 1for Re[\;] =0 = Unstable
Re[\;] <0 Vi & m; = 1for Re[\;] =0 = Stable

If an n X n matrix A has a repeated eigenvalue \; of
algebraic multiplicity g;, then the Jordan blocks of \; have
order one if and only if rank(A — \;I) = n — q;
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fTheorem: The equilibrium point z = 0 of £ = Ax Is stable if
and only if all eigenvalues of A satisfy Re[A;] < 0 and for
every eigenvalue with Re[\;] = 0 and algebraic multiplicity
q; > 2, rank(A — \;I) = n — q;, where n Is the dimension
of . The equilibrium point z = 0 is globally asymptotically
stable if and only if all eigenvalues of A satisfy Re[\;] < 0

When all eigenvalues of A satisfy Re[\;] < 0, A Is called a
Hurwitz matrix

When the origin of a linear system is asymptotically stable,
Its solution satisfies the inequality

lz(®)]| < kllz(0)[le™, vt>0

C E>1,A>0
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fExponentiaI Stability

Definition: The equilibrium point x = 0 of & = f(x) Is said
to be exponentially stable if

lz(@®)|| < kllz(0)]le™, V>0
E>1, A> 0, forall |x(0)|| < ¢

It is said to be globally exponentially stable if the inequality
IS satisfied for any initial state x(0)

Exponential Stability =- Asymptotic Stability

o
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fExampIe o

T = —x

The origin is asymptotically stable
z(0)
V1 + 2tx2(0)

x(t) =

x(t) does not satisfy |x(t)| < ke~ *|x(0)| because

2\t
€ 2

t)| < ke M|x(0 <
x(t)| < ke”*|x(0)| = 1+ 2622(0) =

62)\t

Impossible because lim = 00
\_ t—oo 1 4 2tx2(0)
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fLinearization
w:f(w)v f(O):O

f is continuously differentiable over D = {||x|| < r}
of
J(@) = 2" (x)
£r

h(oc) = f(ox) for 0 <o <1
h'(o) = J(ox)x

1

h(1) — h(0) = / W (o) do, h(0) = f(0) =0

0

1
\— f(a:):/o J(ox) do x



|7 S
1
f(a:):/o J(ox) do x

Set A = J(0) and add and subtract Ax
1
f(z) = [A+ G(z)]z, where G(z) = /O T (ox) — J(0)] do

G(x) -0 as ¢ — 0

This suggests that in a small neighborhood of the origin we
can approximate the nonlinear system & = f(x) by its
linearization about the origin ¢ = Ax

o
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fTheorem:

# The origin is exponentially stable if and only if
Re[\;] < 0 for all eigenvalues of A

# The origin is unstable if Re[\;] > 0 for some ¢

Linearization fails when Re[\;] < 0 for all z, with
Re[\;] = 0 for some ¢

Example

+ = ax>

_ 97

A =
Ox =0

= Sawz}wzo =0

Stable if a = 0; Asymp stable if a < 0; Unstable ifa > 0
LWhen a < 0, the origin is not exponentially stable
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