
Nonlinear Systems and Control
Lecture # 6
Bifurcation
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Bifurcation is a change in the equilibrium points or periodic
orbits, or in their stability properties, as a parameter is
varied

Example

ẋ1 = µ − x2

1

ẋ2 = −x2

Find the equilibrium points and their types for different
values of µ

For µ > 0 there are two equilibrium points at (
√

µ, 0) and

(−√
µ, 0)
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Linearization at (
√

µ, 0):
[

−2
√

µ 0

0 −1

]

(
√

µ, 0) is a stable node

Linearization at (−√
µ, 0):

[

2
√

µ 0

0 −1

]

(−√
µ, 0) is a saddle
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ẋ1 = µ − x2

1
, ẋ2 = −x2

No equilibrium points when µ < 0

As µ decreases, the saddle and node approach each other,
collide at µ = 0, and disappear for µ < 0

x
1

x
2

x
2
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µ > 0 µ = 0 µ < 0
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µ is called the bifurcation parameter and µ = 0 is the
bifurcation point

Bifurcation Diagram

µ
(a) Saddle−node bifurcation

http://www.enm.bris.ac.uk/staff/berndk/chaosweb/saddle.html
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Example
ẋ1 = µx1 − x2

1
, ẋ2 = −x2

Two equilibrium points at (0, 0) and (µ, 0)

The Jacobian at (0, 0) is

[

µ 0

0 −1

]

(0, 0) is a stable node for µ < 0 and a saddle for µ > 0

The Jacobian at (µ, 0) is

[

−µ 0

0 −1

]

(µ, 0) is a saddle for µ < 0 and a stable node for µ > 0
An eigenvalue crosses the origin as µ crosses zero
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ẋ1 = µx1 − x2

1
, ẋ2 = −x2

While the equilibrium points persist through the bifurcation
point µ = 0, (0, 0) changes from a stable node to a saddle
and (µ, 0) changes from a saddle to a stable node

x ’ = mu x − x2

y ’ = − y       
mu = − 1
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For µ ≈ 0, the steady-state operating point of the system
will be close to the origin. So, while the perturbed system
does not have the desired steady-state behavior, it comes
close to it (safe or soft), which is quite different from the
case in the saddle-node bifurcation (dangerous or hard)

µ
(a) Saddle−node bifurcation

µ
(b) Transcritical bifurcation

dangerous or hard safe or soft
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Example ẋ1 = µx1 − x3

1
, ẋ2 = −x2

For µ < 0, there is a stable node at the origin. For µ > 0,
there are three equilibrium points: a saddle at (0, 0) and
stable nodes at (

√
µ, 0), and (−√

µ, 0)

x ’ = mu x − x3

y ’ = − y       
mu = − 1
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Bifurcation diagram

ẋ1 = µx1 − x3

1
, ẋ2 = −x2

For µ < 0, there is a stable node at the origin For µ > 0,
there are three equilibrium points: a saddle at (0, 0) and
stable nodes at (

√
µ, 0), and (−√

µ, 0)

µ
(c) Supercritical pitchfork bifurcation

http://www.enm.bris.ac.uk/staff/berndk/chaosweb/pf.html – p.10/19
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Example
ẋ1 = µx1 + x3

1
, ẋ2 = −x2

For µ < 0, there are three equilibrium points: a stable node
at (0, 0) and two saddles at (±√−µ, 0)

For µ > 0, there is a saddle at (0, 0)

µ
(d) Subcritical pitchfork bifurcation

– p.11/19



Notice the difference between supercritical and subcritical
pitchfork bifurcations

µ
(c) Supercritical pitchfork bifurcation

µ
(d) Subcritical pitchfork bifurcation

safe or soft dangerous or hard
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Example: Tunnel diode Circuit

ẋ1 =
1

C
[−h(x1) + x2]

ẋ2 =
1

L
[−x1 − Rx2 + µ]

A B

x
2
 = h(x

1
)

x
1

x
2

(a)
A B µ

(b)
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Example

ẋ1 = x1(µ − x2

1
− x2

2
) − x2

ẋ2 = x2(µ − x2

1
− x2

2
) + x1

There is a unique equilibrium point at the origin

Linearization:

[

µ −1

1 µ

]

Stable focus for µ < 0, and unstable focus for µ > 0

A pair of complex eigenvalues cross the imaginary axis as
µ crosses zero
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ṙ = µr − r3 and θ̇ = 1

For µ > 0, there is a stable limit cycle at r =
√

µ

x
2

x
1

x
2

x
1

µ < 0 µ > 0

Supercritical Hopf bifurcation
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Example

ẋ1 = x1

[

µ + (x2

1
+ x2

2
) − (x2

1
+ x2

2
)2

]

− x2

ẋ2 = x2

[

µ + (x2

1
+ x2

2
) − (x2

1
+ x2

2
)2

]

+ x1

There is a unique equilibrium point at the origin

Linearization:

[

µ −1

1 µ

]

Stable focus for µ < 0, and unstable focus for µ > 0

A pair of complex eigenvalues cross the imaginary axis as
µ crosses zero
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ṙ = µr + r3 − r5 and θ̇ = 1

Sketch of µr + r3 − r5:

r r

µ < 0 µ > 0

For small |µ|, the stable limit cycles are approximated by
r = 1/

√
2, while the unstable limit cycle for µ < 0 is

approximated by r =
√

|µ|
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Phase Portraits:
x ’ = x (mu + (x2 + y2) − (x2 + y2)2) − y
y ’ = y (mu + (x2 + y2) − (x2 + y2)2) + x

mu = − 0.1
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As µ increases from negative to positive values, the stable
focus at the origin merges with the unstable limit cycle and
bifurcates into unstable focus

Subcritical Hopf bifurcation

µ
(e) Supercritical Hopf bifurcation

µ
(f) Subcrtitical Hopf bifurcation

safe or soft dangerous or hard
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