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Linear Observer via Linearization

ẋ = f(x, u), y = h(x)

0 = f(xss, uss), yss = h(xss)

Linearize about the equilibrium point:

ẋδ = Axδ + Buδ, yδ = Cxδ

xδ = x − xss, uδ = u − uss, yδ = y − yss

What are A, B, C?

˙̂xδ = Ax̂δ + Buδ + H(yδ − Cx̂δ), x̂ = xss + x̂δ

(A − HC) is Hurwitz

It will work locally for sufficiently small ‖xδ(0)‖, ‖x̂δ(0)‖,
and ‖uδ(t)‖
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Feedback Control:

˙̂xδ = Ax̂δ + Buδ + H(yδ − Cx̂δ)

uδ = −Kx̂δ, u = uss − Kx̂δ

Verify that the closed-loop system has an equilibrium point
at

x = xss, x̃ = 0

and linearization at the equilibrium point yields
[

ẋδ

˙̃x

]

=

[

(A − BK) BK

0 (A − HC)

] [

xδ

x̃

]

Which theorem would justify this controller locally?
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Nonlinear Observer via Linearization

ẋ = f(x, u), y = h(x)

0 = f(xss, uss), yss = h(xss)

˙̂x = f(x̂, u) + H[y − h(x̂)]

Equilibrium Point: x = xss, u = uss, x̂ = xss

x̃ = x − x̂

˙̃x = g(x, x̃, u), g(xss, 0, uss) = 0

Verify that linearization at the equilibrium point yields

˙̃x = (A − HC)x̃

Investigate the design of H and the use in feedback control
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Extended Kalman Filter (EKF)

ẋ = f(x, u) + w, y = h(x, u) + v

˙̂x = f(x̂, u) + H(t)[y − h(x̂, u)]

x̃ = x − x̂

˙̃x = f(x, u) + w − f(x̂, u) − H[h(x, u) + v − h(x̂, u)]

Substitute x = x̂ + x̃ and expand the RHS in a Taylor
series about x̃ = 0

˙̃x = [A(t) − H(t)C(t)]x̃ + η(x̃, t) + ξ(t)

A(t) =
∂f

∂x
(x̂(t), u(t)), C(t) =

∂h

∂x
(x̂(t), u(t))

η(0, t) = 0, ξ(t) = w(t) − H(t)v(t)
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Assuming that x(t), u(t), w(t), v(t), and H(t) are
bounded and f and h are twice continuously differentiable,
show that

‖η(x̃, t)‖ ≤ k1‖x̃‖2, ‖ξ(t)‖ ≤ k2

Hint:

f(x, u) − f(x̂, u) −
∂f

∂x
(x̂, u)x̃

=

∫

1

0

∂f

∂x
(σx̃ + x̂, u) dσx̃ −

∂f

∂x
(x̂, u)x̃ (Exercise 3.23)

=

∫

1

0

[

∂f

∂x
(σx̃ + x̂, u) −

∂f

∂x
(x̂, u)

]

dσ x̃
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Kalman Filter Design: Let Q(t) and R(t) be symmetric
positive definite matrices that satisfy

0 < q1I ≤ Q(t) ≤ q2I, 0 < r1I ≤ R(t) ≤ r2I

Let P (t) be the solution of the Riccati equation

Ṗ = AP + PAT + Q − PCT R−1CP, P (t0) = P0 > 0

If (A(t), C(t) is uniformly observable, then P (t) exists for
all t ≥ t0 and satisfies

0 < p1I ≤ P (t) ≤ p2I ⇒ 0 < p3I ≤ P −1(t) ≤ p4I

See a texbook on optimal control or optimal estimation

H(t) = P (t)C(t)T R−1(t)
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Compute A(t) and C(t)

A(t) =
∂f

∂x
(x̂(t), u(t)), C(t) =

∂h

∂x
(x̂(t), u(t))

Solve the Riccati equation

Compute H(t)

H(t) = P (t)C(t)T R−1(t)

Remark: The Riccati equation and the observer equation
have to be solved simultaneously in real time because A(t)
and C(t) depend on x̂(t) and u(t)
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Lemma: The origin of

˙̃x = [A(t) − H(t)C(t)]x̃ + η(x̃, t)

is exponentially stable and the solutions of

˙̃x = [A(t) − H(t)C(t)]x̃ + η(x̃, t) + ξ(t)

are uniformly ultimately bounded by an ultimate bound
proportional to k2

Proof:
V = x̃T P −1x̃

V̇ = x̃T P −1 ˙̃x + ˙̃x
T
P −1x̃ + x̃T d

dt
P −1x̃
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d

dt
P −1 = −P −1ṖP −1

V̇ = x̃T P −1(A − PCT R−1C)x̃

+ x̃T (AT − CT R−1CP )P −1x̃

− x̃T P −1ṖP −1x̃ + 2x̃T P −1(η + ξ)

V̇ = x̃T P −1(AP + PAT − PCT R−1CP − Ṗ )P −1x̃

− x̃T CT R−1Cx̃ + 2x̃T P −1(η + ξ)

= −x̃T (P −1QP −1 + CT R−1C)x̃ + 2x̃T P −1(η + ξ)

≤ −c1‖x̃‖2 + c2‖x̃‖3 + c3‖x̃‖ (c3 ∝ k2)
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Stochastic Interpretation: When w(t) and v(t) are

zero-mean, white noise stochastic processes,

uncorrelated, i.e., E{w(t)vT (τ )} = 0, ∀t, τ , and

E{w(t)wT (τ )} = Q(t)δ(t − τ )

E{v(t)vT (τ )} = R(t)δ(t − τ )

then x̂(t) is an approximation of the minimum variance
estimate that minimizes

E
{

[y(t) − h(x̂(t), u(t))]T [y(t) − h(x̂(t), u(t))]
}

and P (t) is an approximation of the covariance matrix

E
{

[x̂(t) − x(t)][x̂(t) − x(t)]T
}
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Feedback Control: What can you say about the closed-loop
system when x̂ is used in feedback control?
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