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Nonlinear Systems and Control
L ecture# 37

Observers

L Inearization
and
Extended Kalman Filter (EKF)
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Linear Observer via Linearization

| &= f(z,u), y=h(z) -

0= f(wssa uss)a Yss — h(wss)
Linearize about the equilibrium point:

rs = Axs + Bus, ys = Cxs

Ly =L — Lggy U§ —=U — Ussy Y5 — Y — Yss
What are A, B, C?
5;35 = AZs + Bus + H(y5 — CCE(?)’ T = Tss + Tp

(A — HC) is Hurwitz

It will work locally for sufficiently small ||x5(0)||, ||25(0)]|,

and [lus(t)]
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fFeedback Control:
L5 = AZs + Bus + H(ys — Cis)

us = — K, u = ugss — KIs

Verify that the closed-loop system has an equilibrium point
at

T = Tgs, x =20

and linearization at the equilibrium point yields

i ' (A— BK) BK s
T 0 (A— HC) %

LWhich theorem would justify this controller locally?
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Nonlinear Observer via Linearization

- &= f(z,u), y=h(a) .
0 = f(TssyUss)s Yss = h(Tss)

z = f(2,u) + Hly — h(2)]
Equilibrium Point: £ = x5, u = ugs, T = T

r—x —&

T = g(z,z,u), g(Tss,0,uss) =0

Verify that linearization at the equilibrium point yields
r=(A— HC)&

Investigate the design of H and the use In feedback control

o
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Extended Kalman Filter (EKF)

z = f(z,u) +w— f(2u) — Hh(z,u) +v — h(Z,u)]

Substitute x = & + & and expand the RHS in a Taylor
series aboutz = 0

z = [A(t) — H})C(t)]Z + n(Z,t) + &(t)

AW = T @w,uw), o) =25 @), uw)

. n(0,t) =0, &(t) = w(t) — H(t)v(1)



fAssuming that (t), u(t), w(t), v(t), and H(t) are
bounded and f and h are twice continuously differentiable,
show that

In(@, )|l < kallZl®, €@ < ko

Hint:

0
Flasw) — F(#u) = 22 (3, w)7

1o o
— / —f(afi: + Z,u) dox — —f(:i:, u)x (Exercise 3.23)
0 ox ox
118 0
— / [—f(053+:i:,u)——f(:i:,u) do x
0 ox ox
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- Kalman Filter Design: Let Q(t) and R(t) be symmetric
positive definite matrices that satisfy

0 < q1l S Q(t) S g1, 0 < ril S R(t) S rol
Let P(t) be the solution of the Riccati equation
P=AP + PAT + Q — PCTR™CP, P(ty) = Py > 0

If (A(t), C(t) is uniformly observable, then P(t) exists for
all t > tg and satisfies

0<p1I <P(t)<pal = 0<p3l <P t) <pyl

See a texbook on optimal control or optimal estimation

B H(t) =Pt)Ct)'R™1(¢)
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f.o Compute A(t) and C(t)

AW = L@, ue), o) = @), u()

# Solve the Riccati equation
o Compute H (t)
H(t) =Pt)Ct)TR (1)

Remark: The Riccati equation and the observer equation
have to be solved simultaneously in real time because A(t)
and C(t) depend on &(t) and u(t)

o
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fLemma: The origin of
z = [A(t) — H(t)C(t)]Z 4 n(&,t)
IS exponentially stable and the solutions of

z = [A(t) — H(t)C(1)]Z + n(&,t) + £(t)

are uniformly ultimately bounded by an ultimate bound
proportional to k-

Proof:
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d .
—_pl—-_plpp-i
dt

Vv = #TP Y (A-— PCTR'0O)%
+ Al —cTR cP)P 1z
—gt'pP PP 1z 4+ 28T P Y (n+ ¢

g P~Y(AP + PAT — PCTR™CcP - P)P 13
—gl'cTR'cz + 28T P 1(n+¢)
—zh(PplQPr '+ Cc'rR'O)z + 28T P (n+ ¢

—c1l|Z)® + e2||Z|° + esl|Z]] (e ox k2)
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- Stochastic Interpretation: When w(t) and v(t) are
#® zero-mean, white noise stochastic processes,

# uncorrelated, i.e., E{w(t)v! ()} = 0, Vt, T, and

® E{w(t)w" (1)} = Q(t)d(t — T)
E{v(t)vI (7))} = R(t)6(t — T)

then z(t) is an approximation of the minimum variance
estimate that minimizes

E{[y(t) — h(@(t), w(t))]" [y(t) — h(3(), u(t))] }
and P(t) is an approximation of the covariance matrix

E{[2(t) — 2(®)][2(t) — =(t)]" |
-




fFeedback Control: What can you say about the closed-loop
system when z Is used in feedback control?
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