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Nonlinear Systems and Control
L ecture# 30

Stabilization

Control Lyapunov Functions



. é=f@ +g@u, FO)=0,zcR uecR

Suppose there is a continuous stabilizing state feedback
control uw = v (x) such that the origin of

i = f() + g(a)p(x)

IS asymptotically stable

By the converse Lyapunov theorem, there is V' (x) such that

“U1f@) +g@)pp@)] <0, VaeD,w#0

If u = 1 (x) IS globally stabilizing, then D = R™ and V (x)
Lis radially unbounded
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Y@t e <0, VeeD, oo

oV oV
—g(x) =0force e D, x #0 = —f(x) <O
O o

Since ¥ (x) Is continuous and ¥ (0) = 0, given any € > 0,
346 > 0suchthatif x # 0 and ||x|| < 9, there IS u with
|u|| < e such that

OV 1#@) + g@yu] <o

Small Control Property
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fDefinition: A continuously differentiable positive definite
function V' (x) is a Control Lyapunov Function (CLF) for the

system & = f(x) 4+ g(x)u If
K

A% A%
—g(x) =0forcr e D,x#0 = —f(x) <O (%)
or or

# it satisfies the small control property

It is a Global Control Lyapunov Function if it is radially
unbounded and () holds with D = R"

The system = = f(x) 4+ g(x)wu Is stabilizable by a
continuous state feedback control only if it has a CLF

LIS It sufficient?
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fTheorem: Let V(x) be a CLF for & = f(x) 4+ g(x)u, then
origin is stabilizable by v = ¥ (x), where

f+\/( )_I_( If%—gg;éO

(@) = < o:9)

0, if9%g = 0
The function ¥ (x) Is continuous for all x € Dg (a
neighborhood of the origin) including x = 0. If f and g are
smooth, then 2 iIs smooth for £ 0. If V' is a global CLF,
then the control ©v = ¥ (x) Is globally stabilizing

o

Sontag’s Formula
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fProof: For properties of ¢, see Section 9.4 of [88]
oV
S @) +9(2)9(@)]
£r
oV : oV
If —g(x) =0, V=—Ff(x) <0forxz #0
Ox Ox

oV
It %g(w) # 0

S CA(CORC

- _\/(%_gff—l- (%9)4 <0fOI’:13;éO-
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fHow can we find a CLF?

If we know of any stabilizing control with a corresponding
Lyapunov function V', then V' is a CLF

® Feedback Linearization

= f(x) + G(x)u, z=T(x), 2= (A— BK)z

P(A—BK)+ (A-BK)I'P=—-Q, Q=Q >0
V = 2Pz = T" () PT () is a CLF

#® Backstepping

o
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fExampIe:

t=ax —bxr+u, a,b>0

Feedback Linearization:

u = —ax + bx® —kx (k> 0)

r = —kx
V(z) = z2° isa CLF
oV 8Vf ( . 3)
- — a’/o, - — —
33; g Y. r.ax £r
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f -
i (508) + (3%a)”
(529)
z(ax — bx3) + \/x2(ax — bx3)? + x4

I

—ax + bx® — a:\/(a — bx?)? +1

P(x) = —ax + bx® — az\/(a, — bx?)? 4+ 1

Compare with

o

—ax + bx — kx
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Method Expression
FL-u —ax + bx3 — kx
FL-CLS T = —kx
CLF-u | —ax + bx3 — az\/(a, — bx?)? + 1
CLF-CLS —x+/(a — bx?)2 + 1
Method Small |x| Large |x|
FL-u (—a + k)x bax?
FL-CLS r = —kx r = —kx
CLF-u | —(a++Va?+ 1)z —ax
CLF-CLS —+va? + 1x —bx3
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~ Lemma: Let V(z) be a CLF for & = f(x) + g(x)u and

suppose %—‘;(O) — 0. Then, Sontag’s formula has a gain

margin [%, o0); that is, u = kv (x) Is stabilizing for all & >

DN =

Proof: Let

| eV vV \* oV \*
q(x) = 5 _E’f_l_ (%f) —l-(%g)

oV
q0) =0, —g#0 = g>0
ox

oV A%
—qg=0 => g=——-f>0for x#0
oz ox

Lq(a:) IS positive definite
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o

u=ky(x) = &= f(x)+g(x)ky(x)

: oV oV
V= f+ 5 gk{
ox

oV oV
—g=0 = V=—Ff<0 for x#0
ox or

oV A% oV

—g # 0, V——q+q+—f+—gk¢
ox ox

oV oV

Q‘l'—f—Fa—gk'Qb
T

a1 |2V oV \* [0V \*
= —(k—3) %f—l- (af) +(8mg>




