Nonlinear Systems and Control Lecture # 30

Stabilization

Control Lyapunov Functions

$$\dot{x}=f(x)+g(x)u, \qquad f(0)=0, \ x\in R^n, \ u\in R$$

Suppose there is a continuous stabilizing state feedback control $u=\psi(x)$ such that the origin of

$$\dot{x} = f(x) + g(x)\psi(x)$$

is asymptotically stable

By the converse Lyapunov theorem, there is V(x) such that

$$rac{\partial V}{\partial x}[f(x)+g(x)\psi(x)]<0, \quad orall \ x\in D, \ x
eq 0$$

If $u=\psi(x)$ is globally stabilizing, then $D=R^n$ and V(x) is radially unbounded

$$rac{\partial V}{\partial x}[f(x)+g(x)\psi(x)]<0, \quad orall \ x\in D, \ x
eq 0$$

$$\frac{\partial V}{\partial x}g(x) = 0 \text{ for } x \in D, \; x \neq 0 \;\; \Rightarrow \;\; \frac{\partial V}{\partial x}f(x) < 0$$

Since $\psi(x)$ is continuous and $\psi(0)=0$, given any $\varepsilon>0$, $\exists \ \delta>0$ such that if $x\neq 0$ and $\|x\|<\delta$, there is u with $\|u\|<\varepsilon$ such that

$$rac{\partial V}{\partial x}[f(x) + g(x)u] < 0$$

Small Control Property

Definition: A continuously differentiable positive definite function V(x) is a Control Lyapunov Function (CLF) for the system $\dot{x} = f(x) + g(x)u$ if

$$\frac{\partial V}{\partial x}g(x) = 0 \text{ for } x \in D, \ x \neq 0 \ \Rightarrow \ \frac{\partial V}{\partial x}f(x) < 0 \qquad (*)$$

it satisfies the small control property

It is a Global Control Lyapunov Function if it is radially unbounded and (*) holds with $D=R^n$

The system $\dot{x} = f(x) + g(x)u$ is stabilizable by a continuous state feedback control only if it has a CLF ls it sufficient?

Theorem: Let V(x) be a CLF for $\dot{x} = f(x) + g(x)u$, then origin is stabilizable by $u = \psi(x)$, where

$$\psi(x) = \left\{ egin{array}{ll} -rac{rac{\partial V}{\partial x}f + \sqrt{\left(rac{\partial V}{\partial x}f
ight)^2 + \left(rac{\partial V}{\partial x}g
ight)^4}}{\left(rac{\partial V}{\partial x}g
ight)}, & ext{if } rac{\partial V}{\partial x}g
eq 0 \ & & ext{if} rac{\partial V}{\partial x}g = 0 \end{array}
ight.$$

The function $\psi(x)$ is continuous for all $x \in D_0$ (a neighborhood of the origin) including x=0. If f and g are smooth, then ψ is smooth for $x \neq 0$. If V is a global CLF, then the control $u=\psi(x)$ is globally stabilizing

Sontag's Formula

Proof: For properties of ψ , see Section 9.4 of [88]

$$rac{\partial V}{\partial x}[f(x)+g(x)\psi(x)]$$

If
$$\dfrac{\partial V}{\partial x}g(x)=0, \quad \dot{V}=\dfrac{\partial V}{\partial x}f(x)<0 ext{ for } x
eq 0$$

If
$$\frac{\partial V}{\partial x}g(x)
eq 0$$

$$\dot{V} = \frac{\partial V}{\partial x}f - \left[\frac{\partial V}{\partial x}f + \sqrt{\left(\frac{\partial V}{\partial x}f\right)^2 + \left(\frac{\partial V}{\partial x}g\right)^4}\right]$$

$$= -\sqrt{\left(\frac{\partial V}{\partial x}f\right)^2 + \left(\frac{\partial V}{\partial x}g\right)^4} < 0 \text{ for } x \neq 0$$

How can we find a CLF?

If we know of any stabilizing control with a corresponding Lyapunov function V, then V is a CLF

Feedback Linearization

$$\dot x=f(x)+G(x)u, \quad z=T(x), \quad \dot z=(A-BK)z$$
 $P(A-BK)+(A-BK)^TP=-Q, \quad Q=Q^T>0$ $V=z^TPz=T^T(x)PT(x)$ is a CLF

Backstepping

Example:

$$\dot{x}=ax-bx^3+u,\quad a,b>0$$

Feedback Linearization:

$$u=-ax+bx^3-kx \quad (k>0)$$
 $\dot x=-kx$ $V(x)=rac{1}{2}x^2 ext{ is a CLF}$ $rac{\partial V}{\partial x}g=x, \quad rac{\partial V}{\partial x}f=x(ax-bx^3)$

$$egin{aligned} rac{\partial V}{\partial x}f + \sqrt{\left(rac{\partial V}{\partial x}f
ight)^2 + \left(rac{\partial V}{\partial x}g
ight)^4} \ & \left(rac{\partial V}{\partial x}g
ight) \ & = -rac{x(ax-bx^3) + \sqrt{x^2(ax-bx^3)^2 + x^4}}{x} \ & = -ax + bx^3 - x\sqrt{(a-bx^2)^2 + 1} \ & \psi(x) = -ax + bx^3 - x\sqrt{(a-bx^2)^2 + 1} \end{aligned}$$

Compare with

$$-ax + bx^3 - kx$$

Method	Expression	
$FL ext{-}u$	$-ax+bx^3-kx$	
FL-CLS	$\dot{x}=-kx$	
$CLF ext{-}u$	$-ax+bx^3-x\sqrt{(a-bx^2)^2+1}$	
CLF-CLS	$-x\sqrt{(a-bx^2)^2+1}$	

Method	Small $ x $	Large $ x $
$FL ext{-}u$	(-a+k)x	bx^3
FL-CLS	$\dot{x}=-kx$	$\dot{x} = -kx$
$CLF ext{-}u$	$-(a+\sqrt{a^2+1})x$	-ax
CLF-CLS	$-\sqrt{a^2+1}x$	$-bx^3$

Lemma: Let V(x) be a CLF for $\dot{x}=f(x)+g(x)u$ and suppose $\frac{\partial V}{\partial x}(0)=0$. Then, Sontag's formula has a gain margin $[\frac{1}{2},\infty)$; that is, $u=k\psi(x)$ is stabilizing for all $k\geq\frac{1}{2}$

Proof: Let

$$q(x) = rac{1}{2} \left[-rac{\partial V}{\partial x} f + \sqrt{\left(rac{\partial V}{\partial x} f
ight)^2 + \left(rac{\partial V}{\partial x} g
ight)^4}
ight]$$

$$q(0) = 0, \quad \frac{\partial V}{\partial x}g \neq 0 \quad \Rightarrow \quad q > 0$$

$$\frac{\partial V}{\partial x}g=0 \ \Rightarrow \ q=-\frac{\partial V}{\partial x}f>0 \ \text{for} \ x\neq 0$$

q(x) is positive definite

$$u = k\psi(x) \implies \dot{x} = f(x) + g(x)k\psi(x)$$
 $\dot{V} = \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial x}gk\psi$
 $\frac{\partial V}{\partial x}g = 0 \implies \dot{V} = \frac{\partial V}{\partial x}f < 0 \text{ for } x \neq 0$
 $\frac{\partial V}{\partial x}g \neq 0, \quad \dot{V} = -q + q + \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial x}gk\psi$
 $q + \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial x}gk\psi$
 $= -(k - \frac{1}{2})\left[\frac{\partial V}{\partial x}f + \sqrt{\left(\frac{\partial V}{\partial x}f\right)^2 + \left(\frac{\partial V}{\partial x}g\right)^4}\right]$