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Stabilization

Control Lyapunov Functions
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ẋ = f(x) + g(x)u, f(0) = 0, x ∈ Rn, u ∈ R

Suppose there is a continuous stabilizing state feedback
control u = ψ(x) such that the origin of

ẋ = f(x) + g(x)ψ(x)

is asymptotically stable

By the converse Lyapunov theorem, there is V (x) such that

∂V

∂x
[f(x) + g(x)ψ(x)] < 0, ∀ x ∈ D, x 6= 0

If u = ψ(x) is globally stabilizing, then D = Rn and V (x)
is radially unbounded
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∂V

∂x
[f(x) + g(x)ψ(x)] < 0, ∀ x ∈ D, x 6= 0

∂V

∂x
g(x) = 0 for x ∈ D, x 6= 0 ⇒ ∂V

∂x
f(x) < 0

Since ψ(x) is continuous and ψ(0) = 0, given any ε > 0,
∃ δ > 0 such that if x 6= 0 and ‖x‖ < δ, there is u with
‖u‖ < ε such that

∂V

∂x
[f(x) + g(x)u] < 0

Small Control Property
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Definition: A continuously differentiable positive definite
function V (x) is a Control Lyapunov Function (CLF) for the
system ẋ = f(x) + g(x)u if

∂V

∂x
g(x) = 0 for x ∈ D, x 6= 0 ⇒ ∂V

∂x
f(x) < 0 (∗)

it satisfies the small control property

It is a Global Control Lyapunov Function if it is radially
unbounded and (∗) holds with D = Rn

The system ẋ = f(x) + g(x)u is stabilizable by a
continuous state feedback control only if it has a CLF
Is it sufficient?
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Theorem: Let V (x) be a CLF for ẋ = f(x) + g(x)u, then
origin is stabilizable by u = ψ(x), where

ψ(x) =



















−
∂V

∂x
f+

q

(∂V

∂x
f)

2

+(∂V

∂x
g)

4

(∂V

∂x
g)

, if ∂V
∂x
g 6= 0

0, if∂V
∂x
g = 0

The function ψ(x) is continuous for all x ∈ D0 (a
neighborhood of the origin) including x = 0. If f and g are
smooth, then ψ is smooth for x 6= 0. If V is a global CLF,
then the control u = ψ(x) is globally stabilizing

Sontag’s Formula
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Proof: For properties of ψ, see Section 9.4 of [88]

∂V

∂x
[f(x) + g(x)ψ(x)]

If
∂V

∂x
g(x) = 0, V̇ =

∂V

∂x
f(x) < 0 for x 6= 0

If
∂V

∂x
g(x) 6= 0

V̇ = ∂V
∂x
f −

[

∂V
∂x
f +

√

(

∂V
∂x
f

)2

+
(

∂V
∂x
g
)4

]

= −
√

(

∂V
∂x
f

)2

+
(

∂V
∂x
g
)4

< 0 for x 6= 0
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How can we find a CLF?

If we know of any stabilizing control with a corresponding
Lyapunov function V , then V is a CLF

Feedback Linearization

ẋ = f(x) +G(x)u, z = T (x), ż = (A−BK)z

P (A−BK) + (A−BK)TP = −Q, Q = QT > 0

V = zTPz = T T (x)PT (x) is a CLF

Backstepping
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Example:
ẋ = ax− bx3 + u, a, b > 0

Feedback Linearization:

u = −ax+ bx3 − kx (k > 0)

ẋ = −kx
V (x) = 1

2
x2 is a CLF

∂V

∂x
g = x,

∂V

∂x
f = x(ax− bx3)
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−
∂V
∂x
f +

√

(

∂V
∂x
f

)2

+
(

∂V
∂x
g
)4

(

∂V
∂x
g
)

= − x(ax− bx3) +
√

x2(ax− bx3)2 + x4

x

= −ax+ bx3 − x

√

(a− bx2)2 + 1

ψ(x) = −ax+ bx3 − x

√

(a− bx2)2 + 1

Compare with
−ax+ bx3 − kx
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Method Expression
FL-u −ax+ bx3 − kx

FL-CLS ẋ = −kx
CLF-u −ax+ bx3 − x

√

(a− bx2)2 + 1

CLF-CLS −x
√

(a− bx2)2 + 1

Method Small |x| Large |x|
FL-u (−a+ k)x bx3

FL-CLS ẋ = −kx ẋ = −kx
CLF-u −(a+

√
a2 + 1)x −ax

CLF-CLS −
√
a2 + 1x −bx3
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Lemma: Let V (x) be a CLF for ẋ = f(x) + g(x)u and
suppose ∂V

∂x
(0) = 0. Then, Sontag’s formula has a gain

margin [1
2
,∞); that is, u = kψ(x) is stabilizing for all k ≥ 1

2

Proof: Let

q(x) = 1

2



− ∂V

∂x
f +

√

(

∂V

∂x
f

)2

+

(

∂V

∂x
g

)4





q(0) = 0,
∂V

∂x
g 6= 0 ⇒ q > 0

∂V

∂x
g = 0 ⇒ q = −∂V

∂x
f > 0 for x 6= 0

q(x) is positive definite
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u = kψ(x) ⇒ ẋ = f(x) + g(x)kψ(x)

V̇ =
∂V

∂x
f +

∂V

∂x
gkψ

∂V

∂x
g = 0 ⇒ V̇ =

∂V

∂x
f < 0 for x 6= 0

∂V

∂x
g 6= 0, V̇ = −q + q +

∂V

∂x
f +

∂V

∂x
gkψ

q +
∂V

∂x
f +

∂V

∂x
gkψ

= −
(

k − 1

2

)





∂V

∂x
f +

√

(

∂V

∂x
f

)2

+

(

∂V

∂x
g

)4




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