Nonlinear Systems and Control Lecture \# 3 Second-Order Systems

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}\right)=f_{1}(x) \\
\dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}\right)=f_{2}(x)
\end{aligned}
$$

Let $x(t)=\left(x_{1}(t), x_{2}(t)\right)$ be a solution that starts at initial state $x_{0}=\left(x_{10}, x_{20}\right)$. The locus in the $x_{1}-x_{2}$ plane of the solution $x(t)$ for all $t \geq 0$ is a curve that passes through the point x_{0}. This curve is called a trajectory or orbit The $x_{1}-x_{2}$ plane is called the state plane or phase plane The family of all trajectories is called the phase portrait The vector field $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ is tangent to the trajectory at point x because

$$
\frac{d x_{2}}{d x_{1}}=\frac{f_{2}(x)}{f_{1}(x)}
$$

Vector Field diagram

Represent $f(x)$ as a vector based at x; that is, assign to x the directed line segment from x to $x+f(x)$

Repeat at every point in a grid covering the plane

$\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-10 \sin x_{1}$

Numerical Construction of the Phase Portrait:

- Select a bounding box in the state plane
- Select an initial point x_{0} and calculate the trajectory through it by solving

$$
\dot{x}=f(x), \quad x(0)=x_{0}
$$

in forward time (with positive t) and in reverse time (with negative t)

$$
\dot{x}=-f(x), \quad x(0)=x_{0}
$$

- Repeat the process interactively

Use Simulink or pplane

Qualitative Behavior of Linear Systems

$$
\begin{gathered}
\dot{x}=A x, \quad A \text { is a } 2 \times 2 \text { real matrix } \\
x(t)=M \exp \left(J_{r} t\right) M^{-1} x_{0} \\
J_{r}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \text { or }\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \text { or }\left[\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right] \text { or }\left[\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right] \\
x(t)=M z(t) \\
\dot{z}=J_{r} z(t)
\end{gathered}
$$

Case 1. Both eigenvalues are real: $\lambda_{1} \neq \lambda_{2} \neq 0$

$$
M=\left[v_{1}, v_{2}\right]
$$

$v_{1} \& v_{2}$ are the real eigenvectors associated with $\lambda_{1} \& \lambda_{2}$

$$
\begin{gathered}
\dot{z}_{1}=\lambda_{1} z_{1}, \quad \dot{z}_{2}=\lambda_{2} z_{2} \\
z_{1}(t)=z_{10} e^{\lambda_{1} t}, \quad z_{2}(t)=z_{20} e^{\lambda_{2} t} \\
z_{2}=c z_{1}^{\lambda_{2} / \lambda_{1}}, \quad c=z_{20} /\left(z_{10}\right)^{\lambda_{2} / \lambda_{1}}
\end{gathered}
$$

The shape of the phase portrait depends on the signs of $\boldsymbol{\lambda}_{1}$ and λ_{2}

$$
\lambda_{2}<\lambda_{1}<0
$$

$e^{\lambda_{1} t}$ and $e^{\lambda_{2} t}$ tend to zero as $t \rightarrow \infty$
$e^{\lambda_{2} t}$ tends to zero faster than $e^{\lambda_{1} t}$
Call $\boldsymbol{\lambda}_{2}$ the fast eigenvalue (v_{2} the fast eigenvector) and $\boldsymbol{\lambda}_{1}$ the slow eigenvalue (v_{1} the slow eigenvector)

The trajectory tends to the origin along the curve $z_{2}=c z_{1}^{\lambda_{2} / \lambda_{1}}$ with $\lambda_{2} / \lambda_{1}>1$

$$
\frac{d z_{2}}{d z_{1}}=c \frac{\lambda_{2}}{\lambda_{1}} z_{1}^{\left[\left(\lambda_{2} / \lambda_{1}\right)-1\right]}
$$

Stable Node

$$
\lambda_{2}>\lambda_{1}>0
$$

Reverse arrowheads
Reverse arrowheads \Longrightarrow Unstable Node

Stable Node

Unstable Node

$$
\begin{gathered}
\lambda_{2}<0<\lambda_{1} \\
e^{\lambda_{1} t} \rightarrow \infty, \text { while } e^{\lambda_{2} t} \rightarrow 0 \text { as } t \rightarrow \infty
\end{gathered}
$$

Call λ_{2} the stable eigenvalue (v_{2} the stable eigenvector) and λ_{1} the unstable eigenvalue (v_{1} the unstable eigenvector)

$$
z_{2}=c z_{1}^{\lambda_{2} / \lambda_{1}}, \quad \lambda_{2} / \lambda_{1}<0
$$

Saddle

Phase Portrait of a Saddle Point

Case 2. Complex eigenvalues: $\lambda_{1,2}=\alpha \pm j \beta$

$$
\dot{z}_{1}=\alpha z_{1}-\beta z_{2}, \quad \dot{z}_{2}=\beta z_{1}+\alpha z_{2}
$$

$$
r=\sqrt{z_{1}^{2}+z_{2}^{2}}, \quad \theta=\tan ^{-1}\left(\frac{z_{2}}{z_{1}}\right)
$$

$$
r(t)=r_{0} e^{\alpha t} \text { and } \theta(t)=\theta_{0}+\beta t
$$

$$
\alpha<0 \Rightarrow r(t) \rightarrow 0 \text { as } t \rightarrow \infty
$$

$$
\alpha>0 \Rightarrow r(t) \rightarrow \infty \text { as } t \rightarrow \infty
$$

$$
\alpha=0 \Rightarrow r(t) \equiv r_{0} \forall t
$$

\square

$\alpha<0$
Stable Focus

$\alpha>0$
Unstable Focus

$\alpha=0$
Center

Effect of Perturbations

$$
A \rightarrow A+\delta A \quad(\delta A \text { arbitrarily small })
$$

The eigenvalues of a matrix depend continuously on its parameters

A node (with distinct eigenvalues), a saddle or a focus is structurally stable because the qualitative behavior remains the same under arbitrarily small perturbations in \boldsymbol{A}

A stable node with multiple eigenvalues could become a stable node or a stable focus under arbitrarily small perturbations in \boldsymbol{A}

A center is not structurally stable

$$
\left[\begin{array}{cc}
\mu & 1 \\
-1 & \mu
\end{array}\right]
$$

Eigenvalues $=\mu \pm j$
$\mu<0 \Rightarrow$ Stable Focus
$\mu>0 \Rightarrow$ Unstable Focus

