
Nonlinear Systems and Control
Lecture # 3

Second-Order Systems
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ẋ1 = f1(x1, x2) = f1(x)

ẋ2 = f2(x1, x2) = f2(x)

Let x(t) = (x1(t), x2(t)) be a solution that starts at initial
state x0 = (x10, x20). The locus in the x1–x2 plane of the
solution x(t) for all t ≥ 0 is a curve that passes through the
point x0. This curve is called a trajectory or orbit
The x1–x2 plane is called the state plane or phase plane
The family of all trajectories is called the phase portrait
The vector field f(x) = (f1(x), f2(x)) is tangent to the
trajectory at point x because

dx2

dx1
=

f2(x)

f1(x)
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Vector Field diagram

Represent f(x) as a vector based at x; that is, assign to x
the directed line segment from x to x + f(x)
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x = (1, 1)

x + f(x) = (3, 2)

Repeat at every point in a grid covering the plane
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ẋ1 = x2, ẋ2 = −10 sin x1
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Numerical Construction of the Phase Portrait:

Select a bounding box in the state plane

Select an initial point x0 and calculate the trajectory
through it by solving

ẋ = f(x), x(0) = x0

in forward time (with positive t) and in reverse time (with
negative t)

ẋ = −f(x), x(0) = x0

Repeat the process interactively

Use Simulink or pplane
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Qualitative Behavior of Linear Systems

ẋ = Ax, A is a 2 × 2 real matrix

x(t) = M exp(Jrt)M−1x0

Jr =

[

λ1 0

0 λ2

]

or

[

λ 0

0 λ

]

or

[

λ 1

0 λ

]

or

[

α −β

β α

]

x(t) = Mz(t)

ż = Jrz(t)
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Case 1. Both eigenvalues are real: λ1 6= λ2 6= 0

M = [v1, v2]

v1 & v2 are the real eigenvectors associated with λ1 & λ2

ż1 = λ1z1, ż2 = λ2z2

z1(t) = z10e
λ1t, z2(t) = z20e

λ2t

z2 = cz
λ2/λ1

1 , c = z20/(z10)
λ2/λ1

The shape of the phase portrait depends on the signs of λ1

and λ2
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λ2 < λ1 < 0

eλ1t and eλ2t tend to zero as t → ∞

eλ2t tends to zero faster than eλ1t

Call λ2 the fast eigenvalue (v2 the fast eigenvector) and λ1

the slow eigenvalue (v1 the slow eigenvector)

The trajectory tends to the origin along the curve

z2 = cz
λ2/λ1

1 with λ2/λ1 > 1

dz2

dz1
= c

λ2

λ1
z

[(λ2/λ1)−1]
1
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λ2 > λ1 > 0

Reverse arrowheads

Reverse arrowheads =⇒ Unstable Node
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λ2 < 0 < λ1

eλ1t → ∞, while eλ2t → 0 as t → ∞

Call λ2 the stable eigenvalue (v2 the stable eigenvector)
and λ1 the unstable eigenvalue (v1 the unstable
eigenvector)

z2 = cz
λ2/λ1

1 , λ2/λ1 < 0

Saddle
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Phase Portrait of a Saddle Point
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Case 2. Complex eigenvalues: λ1,2 = α ± jβ

ż1 = αz1 − βz2, ż2 = βz1 + αz2

r =
√

z2
1 + z2

2, θ = tan−1

(

z2

z1

)

r(t) = r0e
αt and θ(t) = θ0 + βt

α < 0 ⇒ r(t) → 0 as t → ∞

α > 0 ⇒ r(t) → ∞ as t → ∞

α = 0 ⇒ r(t) ≡ r0 ∀ t
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Effect of Perturbations

A → A + δA (δA arbitrarily small)

The eigenvalues of a matrix depend continuously on its
parameters

A node (with distinct eigenvalues), a saddle or a focus is
structurally stable because the qualitative behavior remains
the same under arbitrarily small perturbations in A

A stable node with multiple eigenvalues could become a
stable node or a stable focus under arbitrarily small
perturbations in A
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A center is not structurally stable
[

µ 1

−1 µ

]

Eigenvalues = µ ± j

µ < 0 ⇒ Stable Focus

µ > 0 ⇒ Unstable Focus
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