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Stabilization

Passivity-Based Control
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ẋ = f(x, u), y = h(x)

f(0, 0) = 0

uT y ≥ V̇ =
∂V

∂x
f(x, u)

Theorem 14.4: If the system is

(1) passive with a radially unbounded positive definite
storage function and

(2) zero-state observable,

then the origin can be globally stabilized by

u = −φ(y), φ(0) = 0, yT φ(y) > 0 ∀ y 6= 0
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Proof:

V̇ =
∂V

∂x
f(x, −φ(y)) ≤ −yT φ(y) ≤ 0

V̇ (x(t)) ≡ 0 ⇒ y(t) ≡ 0 ⇒ u(t) ≡ 0 ⇒ x(t) ≡ 0

Apply the invariance principle

A given system may be made passive by

(1) Choice of output,

(2) Feedback,

or both
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Choice of Output

ẋ = f(x) + G(x)u,
∂V

∂x
f(x) ≤ 0, ∀ x

No output is defined. Choose the output as

y = h(x)
def
=

[

∂V

∂x
G(x)

]T

V̇ =
∂V

∂x
f(x) +

∂V

∂x
G(x)u ≤ yT u

Check zero-state observability
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Example
ẋ1 = x2, ẋ2 = −x3

1
+ u

V (x) = 1

4
x4

1
+ 1

2
x2

2

With u = 0 V̇ = x3

1
x2 − x2x

3

1
= 0

Take y =
∂V

∂x
G =

∂V

∂x2

= x2

Is it zero-state observable?

with u = 0, y(t) ≡ 0 ⇒ x(t) ≡ 0

u = −kx2 or u = −(2k/π) tan−1(x2) (k > 0)
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Feedback Passivation

Definition: The system

ẋ = f(x) + G(x)u, y = h(x)

is equivalent to a passive system if there is

u = α(x) + β(x)v

such that

ẋ = f(x) + G(x)α(x) + G(x)β(x)v, y = h(x)

is passive
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Theorem [31]: The system

ẋ = f(x) + G(x)u, y = h(x)

is locally equivalent to a passive system (with a positive
definite storage function) if it has relative degree one at
x = 0 and the zero dynamics have a stable equilibrium
point at the origin with a positive definite Lyapunov function

Example: m-link Robot Manipulator

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = u

M = MT > 0, (Ṁ − 2C)T = −(Ṁ − 2C), D = DT ≥ 0
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Stabilize the system at q = qr

e = q − qr, ė = q̇

M(q)ë + C(q, q̇)ė + Dė + g(q) = u

(e = 0, ė = 0) is not an open-loop equilibrium point

u = g(q) − φp(e) + v, [φp(0) = 0, eT φp(e) > 0 ∀e 6= 0]

M(q)ë + C(q, q̇)ė + Dė + φp(e) = v

V = 1

2
ėT M(q)ė +

∫ e

0

φT
p (σ) dσ

V̇ = 1

2
ėT (Ṁ−2C)ė−ėT Dė−ėT φp(e)+ėT v+φT

p (e)ė ≤ ėT v

y = ė

– p. 8/??



Is it zero-state observable? Set v = 0

ė(t) ≡ 0 ⇒ ë(t) ≡ 0 ⇒ φp(e(t)) ≡ 0 ⇒ e(t) ≡ 0

v = −φd(ė), [φd(0) = 0, ėT φd(ė) > 0 ∀ė 6= 0]

u = g(q) − φp(e) − φd(ė)

Special case:

u = g(q) − Kpe − Kdė, Kp = KT
p > 0, Kd = KT

d > 0
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How does passivity-based control compare with feedback
linearization?

Example 13.20

ẋ1 = x2, ẋ2 = −h(x1) + u

h(0) = 0, x1h(x1) > 0, ∀ x1 6= 0

Feedback linearization:

u = h(x1) − (k1x1 + k2x2)

ẋ =

[

0 1

−k1 −k2

]

x
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Passivity-based control:

V =

∫ x1

0

h(z) dz + 1

2
x2

2

V̇ = x2h(x1) − x2h(x1) + x2u = x2u

Take y = x2

With u = 0, y(t) ≡ 0 ⇒ h(x1(t)) ≡ 0 ⇒ x1(t) ≡ 0

u = −σ(x2), [σ(0) = 0, yσ(y) > 0 ∀ y 6= 0]

ẋ1 = x2, ẋ2 = −h(x1) − σ(x2)

– p. 11/??



Linearization:
[

0 1

−h′(0) −k

]

, k = σ′(0)

s2 + ks + h′(0) = 0

Sketch the root locus as k varies from zero to infinity

One of the two roots cannot be moved to the left of
Re[s] = −

√

h′(0)
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Cascade Connection:

ż = fa(z) + F (z, y)y, ẋ = f(x) + G(x)u, y = h(x)

fa(0) = 0, f(0) = 0, h(0) = 0

∂V

∂x
f(x) +

∂V

∂x
G(x)u ≤ yT u

∂W

∂z
fa(z) ≤ 0

U(z, x) = W (z) + V (x)

U̇ ≤
∂W

∂z
F (z, y)y + yT u = yT

[

u +

(

∂W

∂z
F (z, y)

)T
]
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u = −

(

∂W

∂z
F (z, y)

)T

+ v ⇒ U̇ ≤ yT v

The system

ż = fa(z) + F (z, y)y

ẋ = f(x) − G(x)

(

∂W

∂z
F (z, y)

)T

+ G(x)v

y = h(x)

with input v and output y is passive with U as the storage
function

Read Examples 14.17 and 14.18

– p. 14/??


	small Choice of Output
	small Feedback Passivation

