Nonlinear Systems and Control Lecture # 27

Stabilization

Partial Feedback Linearization

Consider the nonlinear system

$$\dot{x} = f(x) + G(x)u \qquad [f(0) = 0]$$

Suppose there is a change of variables

$$z = \left[egin{array}{c} \eta \ \xi \end{array}
ight] = T(x) = \left[egin{array}{c} T_1(x) \ T_2(x) \end{array}
ight]$$

defined for all $x \in D \subset \mathbb{R}^n$, that transforms the system into

$$egin{array}{lll} \dot{\eta} &=& f_0(\eta,\xi) \ \dot{\xi} &=& A\xi + B\gamma(x)[u-lpha(x)] \end{array}$$

(A,B) is controllable and $\gamma(x)$ is nonsingular for all $x\in D$

$$u = \alpha(x) + \gamma^{-1}(x)v$$

$$\dot{\eta} = f_0(\eta, \xi), \qquad \qquad \dot{\xi} = A \xi + B v$$

Suppose the origin of $\dot{\eta}=f_0(\eta,0)$ is asymptotically stable

$$v=-K\xi$$
, where $(A-BK)$ is Hurwitz

Lemma 13.1: The origin of

$$\dot{\eta} = f_0(\eta, \xi), \qquad \qquad \dot{\xi} = (A - BK)\xi$$

is asymptotically stable if the origin of $\dot{\eta}=f_0(\eta,0)$ is asymptotically stable

Proof:
$$V(\eta,\xi) = V_1(\eta) + k\sqrt{\xi^T P \xi}$$

If the origin of $\dot{\eta}=f_0(\eta,0)$ is globally asymptotically stable, will the origin of

$$\dot{\eta} = f_0(\eta, \xi), \qquad \qquad \dot{\xi} = (A - BK) \xi$$

be globally asymptotically stable? In general No Example

$$\dot{\eta} = -\eta + \eta^2 \xi, \qquad \qquad \dot{\xi} = v$$

The origin of $\dot{\eta}=-\eta$ is globally exponentially stable, but the origin of

$$\dot{\eta} = -\eta + \eta^2 \xi, \qquad \qquad \dot{\xi} = -k \xi, \quad k > 0$$

is not globally asymptotically stable. The region of attraction is $\{\eta \xi < 1 + k\}$

Example

$$\dot{\eta} = -\frac{1}{2}(1+\xi_2)\eta^3, \qquad \dot{\xi}_1 = \xi_2, \qquad \dot{\xi}_2 = v$$

The origin of $\dot{\eta}=-\frac{1}{2}\eta^3$ is globally asymptotically stable

$$v=-k^2 \xi_1 - 2k \xi_2 \stackrel{ ext{def}}{=} -K \xi \;\; \Rightarrow \;\; A - B K = \left[egin{array}{cc} 0 & 1 \ -k^2 & -2k \end{array}
ight]$$

The eigenvalues of (A - BK) are -k and -k

Peaking Phenomenon:

$$\max_t \{k^2 t e^{-kt}\} = rac{k}{e} o \infty \text{ as } k o \infty$$
 $\xi_1(0) = 1, \; \xi_2(0) = 0 \; \Rightarrow \; \xi_2(t) = -k^2 t e^{-kt}$ $\dot{\eta} = -rac{1}{2} \left(1 - k^2 t e^{-kt}\right) \eta^3, \quad \eta(0) = \eta_0$ $\eta^2(t) = rac{\eta_0^2}{1 + \eta_0^2 [t + (1 + kt) e^{-kt} - 1]}$

If $\eta_0^2 > 1$, the system will have a finite escape time if k is chosen large enough

Lemma 13.2: The origin of

$$\dot{\eta} = f_0(\eta, \xi), \qquad \qquad \dot{\xi} = (A - BK)\xi$$

is globally asymptotically stable if the system $\dot{\eta}=f_0(\eta,\xi)$ is input-to-state stable

Proof: Use

Lemma 4.7: If $\dot{x}_1 = f_1(x_1, x_2)$ is ISS and the origin of $\dot{x}_2 = f_2(x_2)$ is globally asymptotically stable, then the origin of

$$\dot{x}_1 = f_1(x_1, x_2), \qquad \dot{x}_2 = f_2(x_2)$$

is globally asymptotically stable

$$u = \alpha(x) - \gamma^{-1}(x)KT_2(x)$$

What is the effect of uncertainty in α , γ , and T_2 ?

Let $\hat{\alpha}(x)$, $\hat{\gamma}(x)$, and $\hat{T}_2(x)$ be nominal models of $\alpha(x)$, $\gamma(x)$, and $T_2(x)$

$$egin{align} u &= \hat{lpha}(x) - \hat{\gamma}^{-1}(x)K\hat{T}_2(x) \ \dot{\eta} &= f_0(\eta,\xi), \qquad \dot{\xi} &= (A-BK)\xi + B\delta(z) \ \delta &= \gamma[\hat{lpha} - lpha + \gamma^{-1}KT_2 - \hat{\gamma}^{-1}K\hat{T}_2] \ \end{dcases}$$

Lemma 13.4

- If $\|\delta(z)\| \leq \varepsilon$ for all z and $\dot{\eta} = f_0(\eta, \xi)$ is input-to-state stable, then the state z is globally ultimately bounded by a class $\mathcal K$ function of ε
- If $\|\delta(z)\| \le k\|z\|$ in some neighborhood of z=0, with sufficiently small k, and the origin of $\dot{\eta}=f_0(\eta,0)$ is exponentially stable, then z=0 is an exponentially stable equilibrium point of the system

$$\dot{\eta} = f_0(\eta, \xi), ~~\dot{\xi} = (A - BK)\xi + B\delta(z)$$

Proof-First Part: As in Lemma 13.3

$$\|\xi(t)\|_{\leq}carepsilon, \quad orall\ t\geq t_0$$
 $\|\eta(t)\|\leq eta_0(\|\eta(t_0)\|,t-t_0)+\gamma_0(\sup_{t\geq t_0}\|\xi(t)\|)$

$$\|\eta(t)\| \leq eta_0(\|\eta(t_0)\|, t-t_0) + \gamma_0(c\varepsilon)$$

Proof–Second Part:

$$\|c_1\|\eta\|^2 \leq V_1(\eta) \leq c_2\|\eta\|^2$$

$$\frac{\partial V_1}{\partial \eta} f_0(\eta, 0) \le -c_3 \|\eta\|^2$$

$$\left\|rac{\partial V_1}{\partial \eta}
ight\| \leq c_4 \|\eta\|$$

$$egin{aligned} V(z) &= bV_1(\eta) + \xi^T P \xi \ &\dot{V} \leq - \left[egin{array}{c} \|\eta\| \ \|\xi\| \end{array}
ight]^T Q \left[egin{array}{c} \|\eta\| \ \|\xi\| \end{array}
ight] \ Q &= \left[egin{array}{c} bc_3 & -(k\|PB\| + bc_4L/2) \ -(k\|PB\| + bc_4L/2) & 1 - 2k\|PB\| \end{array}
ight] \ b &= k \end{aligned}$$

Q is positive definite for sufficiently small k