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Stabilization

Feedback Lineaization
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Consider the nonlinear system

ẋ = f(x) + G(x)u

f(0) = 0, x ∈ Rn, u ∈ Rm

Suppose there is a change of variables z = T (x), defined
for all x ∈ D ⊂ Rn, that transforms the system into the
controller form

ż = Az + Bγ(x)[u − α(x)]

where (A, B) is controllable and γ(x) is nonsingular for all
x ∈ D

u = α(x) + γ−1(x)v ⇒ ż = Az + Bv
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v = −Kz

Design K such that (A − BK) is Hurwitz

The origin z = 0 of the closed-loop system

ż = (A − BK)z

is globally exponentially stable

u = α(x) − γ−1(x)KT (x)

Closed-loop system in the x-coordinates:

ẋ = f(x) + G(x)
[

α(x) − γ−1(x)KT (x)
]
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What can we say about the stability of x = 0 as an
equilibrium point of

ẋ = f(x) + G(x)
[

α(x) − γ−1(x)KT (x)
]

x = 0 is asymptotically stable because T (x) is a
diffeomorphism. Show it!

Is x = 0 globally asymptotically stable? In general No

It is globally asymptotically stable if T (x) is a global
diffeomorphism (See page 508)
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What information do we need to implement the control

u = α(x) − γ−1(x)KT (x) ?

What is the effect of uncertainty in α, γ, and T ?

Let α̂(x), γ̂(x), and T̂ (x) be nominal models of α(x),
γ(x), and T (x)

u = α̂(x) − γ̂−1(x)KT̂ (x)

Closed-loop system:

ż = (A − BK)z + Bδ(z)

δ = γ[α̂ − α + γ−1KT − γ̂−1KT̂ ]
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ż = (A − BK)z + Bδ(z) (∗)

V (z) = zT Pz, P (A − BK) + (A − BK)T P = −I

Lemma 13.3

If ‖δ(z)‖ ≤ k‖z‖ for all z, where

0 ≤ k <
1

2‖PB‖

then the origin of (*) is globally exponentially stable

If ‖δ(z)‖ ≤ k‖z‖ + ε for all z, then the state z is
globally ultimately bounded by εc for some c > 0
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Example (Pendulum Equation):

θ̈ = −a sin θ − bθ̇ + cT

x1 = θ − δ1, x2 = θ̇, u = T − Tss = T −
a

c
sin δ1

ẋ1 = x2

ẋ2 = −a[sin(x1 + δ1) − sin δ1] − bx2 + cu

u =
1

c
{a[sin(x1 + δ1) − sin δ1] − k1x1 − k2x2}

A − BK =

[

0 1

−k1 −(k2 + b)

]

is Hurwitz
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T = u +
a

c
sin δ1 =

1

c
[a sin(x1 + δ1) − k1x1 − k2x2]

Let â and ĉ be nominal models of a and c

T =
1

ĉ
[â sin(x1 + δ1) − k1x1 − k2x2]

ẋ = (A − BK)x + Bδ(x)

δ(x) =

(

âc − aĉ

ĉ

)

sin(x1 + δ1) −

(

c − ĉ

ĉ

)

(k1x1 + k2x2)
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δ(x) =

(

âc − aĉ

ĉ

)

sin(x1 + δ1) −

(

c − ĉ

ĉ

)

(k1x1 + k2x2)

|δ(x)| ≤ k‖x‖ + ε

k =

∣

∣

∣

∣

âc − aĉ

ĉ

∣

∣

∣

∣

+

∣

∣

∣

∣

c − ĉ

ĉ

∣

∣

∣

∣

√

k2

1
+ k2

2
, ε =

∣

∣

∣

∣

âc − aĉ

ĉ

∣

∣

∣

∣

| sin δ1|

P =

[

p11 p12

p12 p22

]

, PB =

[

p12

p22

]

k <
1

2
√

p2

12
+ p2

22

sin δ1 = 0 ⇒ ε = 0
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Is feedback linearization a good idea?

Example
ẋ = ax − bx3 + u, a, b > 0

u = −(k + a)x + bx3, k > 0, ⇒ ẋ = −kx

−bx3 is a damping term. Why cancel it?

u = −(k + a)x, k > 0, ⇒ ẋ = −kx − bx3

Which design is better?
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Example

ẋ1 = x2

ẋ2 = −h(x1) + u

h(0) = 0 and x1h(x1) > 0, ∀ x1 6= 0

Feedback Linearization:

u = h(x1) − (k1x1 + k2x2)

With y = x2, the system is passive with

V =

∫ x1

0

h(z) dz + 1

2
x2

2

V̇ = h(x1)ẋ1 + x2ẋ2 = yu
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The control

u = −σ(x2), σ(0) = 0, x2σ(x2) > 0 ∀ x2 6= 0

creates a feedback connection of two passive systems with
storage function V

V̇ = −x2σ(x2)

x2(t) ≡ 0 ⇒ ẋ2(t) ≡ 0 ⇒ h(x1(t)) ≡ 0 ⇒ x1(t) ≡ 0

Asymptotic stability of the origin follows from the invariance
principle

Which design is better? (Read Example 13.20)
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