
Nonlinear Systems and Control
Lecture # 25

Stabilization

Basic Concepts & Linearization
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We want to stabilize the system

ẋ = f(x, u)

at the equilibrium point x = xss

Steady-State Problem: Find steady-state control uss s.t.

0 = f(xss, uss)

xδ = x − xss, uδ = u − uss

ẋδ = f(xss + xδ, uss + uδ)
def
= fδ(xδ, uδ)

fδ(0, 0) = 0

uδ = γ(xδ) ⇒ u = uss + γ(x − xss)
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State Feedback Stabilization: Given

ẋ = f(x, u) [f(0, 0) = 0]

find
u = γ(x) [γ(0) = 0]

s.t. the origin is an asymptotically stable equilibrium point of

ẋ = f(x, γ(x))

f and γ are locally Lipschitz functions
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Linear Systems
ẋ = Ax + Bu

(A, B) is stabilizable (controllable or every uncontrollable
eigenvalue has a negative real part)

Find K such that (A − BK) is Hurwitz

u = −Kx

Typical methods:

Eigenvalue Placement

Eigenvalue-Eigenvector Placement

LQR
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Linearization
ẋ = f(x, u)

f(0, 0) = 0 and f is continuously differentiable in a domain
Dx × Du that contains the origin (x = 0, u = 0)
(Dx ⊂ Rn, Du ⊂ Rp)

ẋ = Ax + Bu

A =
∂f

∂x
(x, u)

∣

∣

∣

∣

x=0,u=0

; B =
∂f

∂u
(x, u)

∣

∣

∣

∣

x=0,u=0

Assume (A, B) is stabilizable. Design a matrix K such that
(A − BK) is Hurwitz

u = −Kx
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Closed-loop system:

ẋ = f(x, −Kx)

ẋ =

[

∂f

∂x
(x, −Kx) +

∂f

∂u
(x, −Kx) (−K)

]

x=0

x

= (A − BK)x

Since (A − BK) is Hurwitz, the origin is an exponentially
stable equilibrium point of the closed-loop system
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Example (Pendulum Equation):

θ̈ = −a sin θ − bθ̇ + cT

Stabilize the pendulum at θ = δ

0 = −a sin δ + cTss

x1 = θ − δ, x2 = θ̇, u = T − Tss

ẋ1 = x2

ẋ2 = −a[sin(x1 + δ) − sin δ] − bx2 + cu

A =

[

0 1

−a cos(x1 + δ) −b

]

x1=0

=

[

0 1

−a cos δ −b

]
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A =

[

0 1

−a cos δ −b

]

; B =

[

0

c

]

K =
[

k1 k2

]

A − BK =

[

0 1

−(a cos δ + ck1) −(b + ck2)

]

k1 > −
a cos δ

c
, k2 > −

b

c

T =
a sin δ

c
− Kx =

a sin δ

c
− k1(θ − δ) − k2θ̇
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Notions of Stabilization

ẋ = f(x, u), u = γ(x)

Local Stabilization: The origin of ẋ = f(x, γ(x)) is
asymptotically stable (e.g., linearization)

Regional Stabilization: The origin of ẋ = f(x, γ(x)) is
asymptotically stable and a given region G is a subset of
the region of attraction (for all x(0) ∈ G, limt→∞ x(t) = 0)
(e.g., G ⊂ Ωc = {V (x) ≤ c} where Ωc is an estimate of
the region of attraction)

Global Stabilization: The origin of ẋ = f(x, γ(x)) is
globally asymptotically stable
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Semiglobal Stabilization: The origin of ẋ = f(x, γ(x)) is
asymptotically stable and γ(x) can be designed such that
any given compact set (no matter how large) can be
included in the region of attraction (Typically u = γp(x) is
dependent on a parameter p such that for any compact set
G, p can be chosen to ensure that G is a subset of the
region of attraction )

What is the difference between global stabilization and
semiglobal stabilization?
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Example
ẋ = x2 + u

Linearization:

ẋ = u, u = −kx, k > 0

Closed-loop system:

ẋ = −kx + x2

Linearization of the closed-loop system yields ẋ = −kx.
Thus, u = −kx achieves local stabilization

The region of attraction is {x < k}. Thus, for any set
{x ≤ a} with a < k, the control u = −kx achieves
regional stabilization
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The control u = −kx does not achieve global stabilization

But it achieves semiglobal stabilization because any
compact set {|x| ≤ r} can be included in the region of
attraction by choosing k > r

The control
u = −x2 − kx

achieves global stabilization because it yields the linear
closed-loop system ẋ = −kx whose origin is globally
exponentially stable
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Practical Stabilization

ẋ = f(x, u) + g(x, u, t)

f(0, 0) = 0, g(0, 0, t) 6= 0

‖g(x, u, t)‖ ≤ δ, ∀ x ∈ Dx, u ∈ Du, t ≥ 0

There is no control u = γ(x), with γ(0) = 0, that can make
the origin of

ẋ = f(x, γ(x)) + g(x, γ(x), t)

uniformly asymptotically stable because the origin is not an
equilibrium point
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Definition: The system

ẋ = f(x, u) + g(x, u, t)

is practically stabilizable if for any β > 0 there is a control
law u = γ(x) such that the solutions of

ẋ = f(x, γ(x)) + g(x, γ(x), t)

are uniformly ultimately bounded by β; i.e.,

‖x(t)‖ ≤ β, ∀ t ≥ T

Typically, u = γp(x) is dependent on a parameter p such
that for any β > 0, p can be chosen to ensure that β is an
ultimate bound
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With practical stabilization, we may have

local practical stabilization

regional practical stabilization

global practical stabilization, or

semiglobal practical stabilization

depending on the region of initial states
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Example

ẋ = x2 + u + d(t), |d(t)| ≤ δ, ∀ t ≥ 0

u = −kx, k > 0, ⇒ ẋ = x2 − kx + d(t)

V = 1

2
x2 ⇒ V̇ = x3 − kx2 + xd(t)

V̇ ≤ −k
3
x2 − x2

(

k
3

− |x|
)

− |x|
(

k
3
|x| − δ

)

V̇ ≤ −k
3
x2, for µ := 3δ

k
≤ |x| ≤ k

3

Take 3δ
k

= α
−1

1
(α2(µ)) ≤ β ⇔ k ≥ 3δ

β

By choosing k large enough we can achieve semiglobal
practical stabilization
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ẋ = x2 + u + d(t)

u = −x2 − kx, k > 0, ⇒ ẋ = −kx + d(t)

V = 1

2
x2 ⇒ V̇ = −kx2 + xd(t)

V̇ ≤ −k
2
x2 − |x|

(

k
2
|x| − δ

)

V̇ ≤ −k
2
x2, for |x| ≥ 2δ

k
=: µ

⇒ β ≥ α
−1

1
(α2(µ)) = µ

By choosing k large enough we can achieve global practical
stabilization
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