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Nonlinear Systems and Control
Lecture# 25

Stabilization

Basic Concepts & Linearization



fWe want to stabilize the system
= f(x,u)

at the equilibrium point x = x4

Steady-State Problem: Find steady-state control ugg S.t.

0= f(wssa uss)

Ly = L — Lsgy U5y — U — Usgs
. def
Ly = .f(wss + X5, Uss + ué) — f&(wdaud)
fd(an) =0

\_ us = v(xrs) = u = ugs + v(xr — x55)
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fState Feedback Stabilization: Given

T = f(x,u) [£(0,0) = 0]
find
u = v(x) [7(0) = 0]
s.t. the origin is an asymptotically stable equilibrium point of
T = .f(wa 7($))

f and ~ are locally Lipschitz functions

o
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fLinear Systems
r = Ax + Bu

(A, B) is stabilizable (controllable or every uncontrollable
eigenvalue has a negative real part)

Find K such that (A — BK) is Hurwitz
u=—Kx

Typical methods:
# Eigenvalue Placement

# Eigenvalue-Eigenvector Placement

L.p LOR
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fLinearization
= f(x,u)

f(0,0) = 0 and f is continuously differentiable in a domain
D, x D, that contains the origin (x = 0, u = 0)
(D, C R*, D, C RP)

r = Ax + Bu

A= — . ) B = — (=,
py (z,u) o 9ul (z,u) 0wt

Assume (A, B) Is stabilizable. Design a matrix K such that
(A — BK) Is Hurwitz

o

u=—Kx
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fCIosed-Ioop system:
= f(x,—Kx)

[of a1
T = [a(w,—Kw)+£(w,—Km) (—K) x

= (A— BK)x

x=0

Since (A — BK) is Hurwitz, the origin is an exponentially
stable equilibrium point of the closed-loop system

o
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~ Example (Pendulum Equation):
0 = —asin — bl + cT
Stabilize the pendulum at @ = ¢
0 = —asind + T

xr1 =0 — 9, $2:é, u=T — T

£i31 — X2
2 = —alsin(xy + ) — sind| — bxo + cu
L A — 0 1 _ 0
—acos(xy +90) —b - —a cos 6

—b
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A — BK = 0 !
—(acosd + cki1) —(b+ ck2)
a cos 0 b
kl > — ’ kz > — —
C C
a sin 0 a sin o .
C C
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Notions of Stabilization

= f(x,u), u=~y(z)

Local Stabilization: The origin of & = f(x,~v(x)) Is
asymptotically stable (e.g., linearization)

Regional Stabilization: The origin of & = f(x,~v(x)) IS
asymptotically stable and a given region G Is a subset of
the region of attraction (for all x(0) € G, lim;_, o, x(t) = 0)
(e.9., G C Q2. = {V(x) < c} where (2. Is an estimate of
the region of attraction)

Global Stabilization: The origin of & = f(x,v(x)) IS
globally asymptotically stable
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fSemiglobal Stabilization: The origin of & = f(x,~v(x)) IS
asymptotically stable and v(x) can be designed such that
any given compact set (no matter how large) can be
Included In the region of attraction (Typically u = ~,(x) Is
dependent on a parameter p such that for any compact set

G, p can be chosen to ensure that GG Is a subset of the
region of attraction )

What is the difference between global stabilization and
semiglobal stabilization?
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~ Example -
T = x° + u
Linearization:

Tr = u, u—=—kx, k>0

Closed-loop system:

r = —kx + x>
Linearization of the closed-loop system yields © = —kx.
Thus, © = —kx achieves local stabilization

The region of attraction is { < k}. Thus, for any set
{x < a} with a < k, the control uw = —ka achieves
Lregional stabilization
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fThe control u = —kx does not achieve global stabilization

But it achieves semiglobal stabilization because any
compact set {|x| < r} can be included in the region of
attraction by choosing k£ > r

The control
uw= —x%— kx

achieves global stabilization because it yields the linear
closed-loop system & = —kx whose origin is globally
exponentially stable
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Practical Stabilization

w.:f(mvu)+g(wauvt)
£(0,0) =0, ¢(0,0,t) #0
lg(z,u,t)|| <8, V@& €Dy u€ Dy, t>0

There is no control v = ~(x), with v(0) = 0, that can make
the origin of

= f(x,v(x)) + g(z,v(x), 1)

uniformly asymptotically stable because the origin is not an
equilibrium point
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fDefinition: The system
t = f(x,u) + g(z,u,t)

IS practically stabilizable if for any 3 > 0 there is a control
law u = ~(x) such that the solutions of

&= f(z,v(x)) + g(z,v(x),t)
are uniformly ultimately bounded by 3; I.e.,
e < B, V=T

Typically, u = v, (x) Is dependent on a parameter p such
that for any 3 > 0, p can be chosen to ensure that 3 Is an
Lultimate bound
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fWith practical stabilization, we may have
# local practical stabilization
# regional practical stabilization
# global practical stabilization, or
# semiglobal practical stabilization

depending on the region of initial states
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fExampIe

t=x’+ut+dt), |dit)] < VEt>0

u=—kx, k>0, = z=ax°—kx+d)
V=232 = V=2—ka?+zd(?)
<

k k k
—ka? —a? (§ — |z|) — Jo| (&l2| — o)
V< —£2? forp:=3<|z| <%

Vv

Take 3 = a7 ' (ca(p)) <8 & k>3[;s

By choosing k large enough we can achieve semiglobal
Lpractical stabilization
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:i::azz—l—u—l—d(t)
u=—z’—kx, k>0, = &=—kzx+d)
V:%w2 = V = —ka? + xd(t)
V< —ka? g (§|a;| _ 5)
Vg—ga:z, f0r|m|2%5::u

=B 2> a; (az(p) = p

By choosing k large enough we can achieve global practical
stabilization
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