Nonlinear Systems and Control Lecture \# 23

Controller Form

Definition: A nonlinear system is in the controller form if

$$
\dot{x}=A x+B \gamma(x)[u-\alpha(x)]
$$

where $(\boldsymbol{A}, \boldsymbol{B})$ is controllable and $\gamma(\boldsymbol{x})$ is a nonsingular

$$
u=\alpha(x)+\gamma^{-1}(x) v \Rightarrow \dot{x}=A x+B v
$$

The n-dimensional single-input (SI) system

$$
\dot{x}=f(x)+g(x) u
$$

can be transformed into the controller form if $\exists \boldsymbol{h}(\boldsymbol{x})$ s.t.

$$
\dot{x}=f(x)+g(x) u, \quad y=h(x)
$$

has relative degree n. Why?

Transform the system into the normal form

$$
\dot{z}=A_{c} z+B_{c} \gamma(z)[u-\alpha(z)], \quad y=C_{c} z
$$

On the other hand, if there is a change of variables $\zeta=S(x)$ that transforms the SI system

$$
\dot{x}=f(x)+g(x) u
$$

into the controller form

$$
\dot{\zeta}=A \zeta+B \gamma(\zeta)[u-\alpha(\zeta)]
$$

then there is a function $h(x)$ such that the system

$$
\dot{x}=f(x)+g(x) u, \quad y=h(x)
$$

has relative degree n. Why?

For any controllable pair $(\boldsymbol{A}, \boldsymbol{B})$, we can find a nonsingular matrix M that transforms (A, B) into a controllable canonical form:

$$
\begin{gathered}
M A M^{-1}=A_{c}+B_{c} \lambda^{T}, \quad M B=B_{c} \\
z=M \zeta=M S(x) \stackrel{\text { def }}{=} T(x) \\
\dot{z}=A_{c} z+B_{c} \gamma(\cdot)[u-\alpha(\cdot)] \\
h(x)=T_{1}(x)
\end{gathered}
$$

In summary, the n-dimensional SI system

$$
\dot{x}=f(x)+g(x) u
$$

is transformable into the controller form if and only if $\exists \boldsymbol{h}(\boldsymbol{x})$ such that

$$
\dot{x}=f(x)+g(x) u, \quad y=h(x)
$$

has relative degree n
Search for a smooth function $h(x)$ such that
$L_{g} L_{f}^{i-1} h(x)=0, i=1,2, \ldots, n-1$, and $L_{g} L_{f}^{n-1} h(x) \neq 0$

$$
T(x)=\left[\begin{array}{llll}
h(x), & L_{f} h(x), & \cdots & L_{f}^{n-1} h(x)
\end{array}\right]
$$

The Lie Bracket: For two vector fields f and g, the Lie bracket $[f, g]$ is a third vector field defined by

$$
[f, g](x)=\frac{\partial g}{\partial x} f(x)-\frac{\partial f}{\partial x} g(x)
$$

Notation:

$$
\begin{gathered}
a d_{f}^{0} g(x)=g(x), \quad a d_{f} g(x)=[f, g](x) \\
a d_{f}^{k} g(x)=\left[f, a d_{f}^{k-1} g\right](x), \quad k \geq 1
\end{gathered}
$$

Properties:

- $[f, g]=-[g, f]$
- For constant vector fields f and $g,[f, g]=0$

Example

$$
\begin{gathered}
f=\left[\begin{array}{c}
x_{2} \\
-\sin x_{1}-x_{2}
\end{array}\right], g=\left[\begin{array}{c}
0 \\
x_{1}
\end{array}\right] \\
{[f, g]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-\sin x_{1}-x_{2}
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-\cos x_{1} & -1
\end{array}\right]\left[\begin{array}{c}
0 \\
x_{1}
\end{array}\right]} \\
a d_{f} g=[f, g]=\left[\begin{array}{c}
-x_{1} \\
x_{1}+x_{2}
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& f= {\left[\begin{array}{c}
x_{2} \\
-\sin x_{1}-x_{2}
\end{array}\right], a d_{f} g=\left[\begin{array}{c}
-x_{1} \\
x_{1}+x_{2}
\end{array}\right] } \\
& a d_{f}^{2} g=\left[f, a d_{f} g\right]= \\
& {\left[\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-\sin x_{1}-x_{2}
\end{array}\right] } \\
&-\left[\begin{array}{cc}
0 & 1 \\
-\cos x_{1} & -1
\end{array}\right]\left[\begin{array}{c}
-x_{1} \\
x_{1}+x_{2}
\end{array}\right] \\
&= {\left[\begin{array}{c}
-x_{1}-2 x_{2} \\
x_{1}+x_{2}-\sin x_{1}-x_{1} \cos x_{1}
\end{array}\right] }
\end{aligned}
$$

Distribution: For vector fields $f_{1}, f_{2}, \ldots, f_{k}$ on $D \subset R^{n}$, let

$$
\Delta(x)=\operatorname{span}\left\{f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right\}
$$

The collection of all vector spaces $\Delta(x)$ for $x \in D$ is called a distribution and referred to by

$$
\Delta=\operatorname{span}\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}
$$

If $\operatorname{dim}(\Delta(x))=k$ for all $x \in D$, we say that Δ is a nonsingular distribution on D, generated by f_{1}, \ldots, f_{k} A distribution Δ is involutive if

$$
g_{1} \in \Delta \text { and } g_{2} \in \Delta \Rightarrow\left[g_{1}, g_{2}\right] \in \Delta
$$

Lemma: If Δ is a nonsingular distribution, generated by f_{1}, \ldots, f_{k}, then it is involutive if and only if

$$
\left[f_{i}, f_{j}\right] \in \Delta, \quad \forall 1 \leq i, j \leq k
$$

Example: $\boldsymbol{D}=\boldsymbol{R}^{3} ; \Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\}$
$f_{1}=\left[\begin{array}{c}2 x_{2} \\ 1 \\ 0\end{array}\right], f_{2}=\left[\begin{array}{c}1 \\ 0 \\ x_{2}\end{array}\right], \quad \operatorname{dim}(\Delta(x))=2, \forall x \in D$

$$
\left[f_{1}, f_{2}\right]=\frac{\partial f_{2}}{\partial x} f_{1}-\frac{\partial f_{1}}{\partial x} f_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{rank}\left[f_{1}(x), f_{2}(x),\left[f_{1}, f_{2}\right](x)\right]= \\
& \quad \operatorname{rank}\left[\begin{array}{ccc}
2 x_{2} & 1 & 0 \\
1 & 0 & 0 \\
0 & x_{2} & 1
\end{array}\right]=3, \quad \forall x \in D
\end{aligned}
$$

Δ is not involutive

Example: $\boldsymbol{D}=\left\{x \in R^{3} \mid x_{1}^{2}+x_{3}^{2} \neq 0\right\} ; \Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\}$

$$
\begin{gathered}
f_{1}=\left[\begin{array}{c}
2 x_{3} \\
-1 \\
0
\end{array}\right], f_{2}=\left[\begin{array}{c}
-x_{1} \\
-2 x_{2} \\
x_{3}
\end{array}\right], \operatorname{dim}(\Delta(x))=2, \forall x \in D \\
{\left[f_{1}, f_{2}\right]=\frac{\partial f_{2}}{\partial x} f_{1}-\frac{\partial f_{1}}{\partial x} f_{2}=\left[\begin{array}{c}
-4 x_{3} \\
2 \\
0
\end{array}\right]} \\
\operatorname{rank}\left[\begin{array}{ccc}
2 x_{3} & -x_{1} & -4 x_{3} \\
-1 & -2 x_{2} & 2 \\
0 & x_{3} & 0
\end{array}\right]=2, \forall x \in D \\
\Delta \text { is involutive }
\end{gathered}
$$

Theorem: The n-dimensional SI system

$$
\dot{x}=f(x)+g(x) u
$$

is transformable into the controller form if and only if there is a domain D_{0} such that

$$
\operatorname{rank}\left[g(x), a d_{f} g(x), \ldots, a d_{f}^{n-1} g(x)\right]=n, \quad \forall x \in D_{0}
$$

and
span $\left\{g, a d_{f} g, \ldots, a d_{f}^{n-2} g\right\}$ is involutive in D_{0}

Example

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{c}
a \sin x_{2} \\
-x_{1}^{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
a d_{f} g=[f, g]=-\frac{\partial f}{\partial x} g=\left[\begin{array}{c}
-a \cos x_{2} \\
0
\end{array}\right] \\
{\left[g(x), a d_{f} g(x)\right]=\left[\begin{array}{cc}
0 & -a \cos x_{2} \\
1 & 0
\end{array}\right]}
\end{gathered}
$$

$\operatorname{rank}\left[g(x), a d_{f} g(x)\right]=2, \forall x$ such that $\cos x_{2} \neq 0$ $\operatorname{span}\{g\}$ is involutive
Find h such that $L_{g} h(x)=0$, and $L_{g} L_{f} h(x) \neq 0$

$$
\begin{gathered}
\frac{\partial h}{\partial x} g=\frac{\partial h}{\partial x_{2}}=0 \Rightarrow h \text { is independent of } x_{2} \\
L_{f} h(x)=\frac{\partial h}{\partial x_{1}} a \sin x_{2} \\
L_{g} L_{f} h(x)=\frac{\partial\left(L_{f} h\right)}{\partial x} g=\frac{\partial\left(L_{f} h\right)}{\partial x_{2}}=\frac{\partial h}{\partial x_{1}} a \cos x_{2} \\
L_{g} L_{f} h(x) \neq 0 \text { in } D_{0}=\left\{x \in R^{2} \mid \cos x_{2} \neq 0\right\} \text { if } \frac{\partial h}{\partial x_{1}} \neq 0 \\
\text { Take } h(x)=x_{1} \Rightarrow T(x)=\left[\begin{array}{c}
h \\
L_{f} h
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
a \sin x_{2}
\end{array}\right]
\end{gathered}
$$

Example (Field-Controlled DC Motor)

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{c}
-a x_{1} \\
-b x_{2}+k-c x_{1} x_{3} \\
\theta x_{1} x_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u \\
a d_{f} g=\left[\begin{array}{c}
a \\
c x_{3} \\
-\theta x_{2}
\end{array}\right] ; a d_{f}^{2} g=\left[\begin{array}{c}
a^{2} \\
(a+b) c x_{3} \\
(b-a) \theta x_{2}-\theta k
\end{array}\right] \\
{\left[g(x), a d_{f} g(x), a d_{f}^{2} g(x)\right]=\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & c x_{3} & (a+b) c x_{3} \\
0 & -\theta x_{2} & (b-a) \theta x_{2}-\theta k
\end{array}\right]}
\end{gathered}
$$

$$
\operatorname{det}[\cdot]=c \theta\left(-k+2 b x_{2}\right) x_{3}
$$

rank $[\cdot]=3$ for $x_{2} \neq k / 2 b$ and $x_{3} \neq 0$
$\operatorname{span}\left\{g, a d_{f} g\right\}$ is involutive if $\left[g, a d_{f} g\right] \in \operatorname{span}\left\{g, a d_{f} g\right\}$

$$
\left[g, a d_{f} g\right]=\frac{\partial\left(a d_{f} g\right)}{\partial x} g=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c \\
0 & -\theta & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$\Rightarrow \operatorname{span}\left\{g, a d_{f} g\right\}$ is involutive

$$
D_{0}=\left\{x \in R^{3} \left\lvert\, x_{2}>\frac{k}{2 b}\right. \text { and } x_{3}>0\right\}
$$

Find h such that $L_{g} h(x)=L_{g} L_{f} h(x)=0 ; L_{g} L_{f}^{2} h(x) \neq 0$

$$
\begin{gathered}
x^{*}=\left[0, k / b, \omega_{0}\right]^{T}, \quad h\left(x^{*}\right)=0 \\
\frac{\partial h}{\partial x} g=\frac{\partial h}{\partial x_{1}}=0 \Rightarrow h \text { is independent of } x_{1} \\
L_{f} h(x)=\frac{\partial h}{\partial x_{2}}\left[-b x_{2}+k-c x_{1} x_{3}\right]+\frac{\partial h}{\partial x_{3}} \theta x_{1} x_{2} \\
{\left[\partial\left(L_{f} h\right) / \partial x\right] g=0 \Rightarrow c x_{3} \frac{\partial h}{\partial x_{2}}=\theta x_{2} \frac{\partial h}{\partial x_{3}}} \\
h=c_{1}\left[\theta x_{2}^{2}+c x_{3}^{2}\right]+c_{2}, L_{g} L_{f}^{2} h(x)=-2 c_{1} c \theta\left(k-2 b x_{2}\right) x_{3} \\
h\left(x^{*}\right)=c_{1}\left[\theta(k / b)^{2}+c \omega_{0}^{2}\right]+c_{2} \\
c_{1}=1, c_{2}=-\theta(k / b)^{2}-c \omega_{0}^{2}
\end{gathered}
$$

