Nonlinear Systems and Control Lecture \# 22

Normal Form

Relative Degree

$$
\dot{x}=f(x)+g(x) u, \quad y=h(x)
$$

where $\boldsymbol{f}, \boldsymbol{g}$, and \boldsymbol{h} are sufficiently smooth in a domain \boldsymbol{D} $\boldsymbol{f}: \boldsymbol{D} \rightarrow \boldsymbol{R}^{n}$ and $\boldsymbol{g}: \boldsymbol{D} \rightarrow \boldsymbol{R}^{n}$ are called vector fields on \boldsymbol{D}

$$
\begin{gathered}
\dot{y}=\frac{\partial h}{\partial x}[f(x)+g(x) u] \stackrel{\text { def }}{=} L_{f} h(x)+L_{g} h(x) u \\
L_{f} h(x)=\frac{\partial h}{\partial x} f(x)
\end{gathered}
$$

is the Lie Derivative of h with respect to f or along f

$$
\begin{gathered}
L_{g} L_{f} h(x)=\frac{\partial\left(L_{f} h\right)}{\partial x} g(x) \\
L_{f}^{2} h(x)=L_{f} L_{f} h(x)=\frac{\partial\left(L_{f} h\right)}{\partial x} f(x) \\
L_{f}^{k} h(x)=L_{f} L_{f}^{k-1} h(x)=\frac{\partial\left(L_{f}^{k-1} h\right)}{\partial x} f(x) \\
L_{f}^{0} h(x)=h(x) \\
\dot{y}=L_{f} h(x)+L_{g} h(x) u \\
L_{g} h(x)=0 \Rightarrow \dot{y}=L_{f} h(x) \\
y^{(2)}=\frac{\partial\left(L_{f} h\right)}{\partial x}[f(x)+g(x) u]=L_{f}^{2} h(x)+L_{g} L_{f} h(x) u
\end{gathered}
$$

$$
\begin{gathered}
L_{g} L_{f} h(x)=0 \Rightarrow y^{(2)}=L_{f}^{2} h(x) \\
y^{(3)}=L_{f}^{3} h(x)+L_{g} L_{f}^{2} h(x) u \\
L_{g} L_{f}^{i-1} h(x)=0, \quad i=1,2, \ldots, \rho-1 ; \quad L_{g} L_{f}^{\rho-1} h(x) \neq 0 \\
y^{(\rho)}=L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u
\end{gathered}
$$

Definition: The system

$$
\dot{x}=f(x)+g(x) u, \quad y=h(x)
$$

has relative degree $\rho, 1 \leq \rho \leq n$, in $D_{0} \subset D$ if $\forall x \in D_{0}$

$$
L_{g} L_{f}^{i-1} h(x)=0, \quad i=1,2, \ldots, \rho-1 ; \quad L_{g} L_{f}^{\rho-1} h(x) \neq 0
$$

Example

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u, \quad y=x_{1}, \quad \varepsilon>0
$$

$$
\begin{gathered}
\dot{y}=\dot{x}_{1}=x_{2} \\
\ddot{y}=\dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u
\end{gathered}
$$

Relative degree $=2$ over R^{2}
Example

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u, \quad y=x_{2}, \quad \varepsilon>0
$$

$$
\dot{y}=\dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u
$$

Relative degree $=1$ over \boldsymbol{R}^{2}

Example

$$
\begin{gathered}
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u, \quad y=x_{1}+x_{2}^{2}, \quad \varepsilon>0 \\
\dot{y}=x_{2}+2 x_{2}\left[-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u\right]
\end{gathered}
$$

Relative degree $=1$ over $\left\{x_{2} \neq 0\right\}$
Example: Field-controlled DC motor

$$
\dot{x}_{1}=-a x_{1}+u, \dot{x}_{2}=-b x_{2}+k-c x_{1} x_{3}, \dot{x}_{3}=\theta x_{1} x_{2}, y=x_{3}
$$

a, b, c, k, and θ are positive constants

$$
\begin{gathered}
\dot{y}=\dot{x}_{3}=\theta x_{1} x_{2} \\
\ddot{y}=\theta x_{1} \dot{x}_{2}+\theta \dot{x}_{1} x_{2}=(\cdot)+\theta x_{2} u \\
\text { Relative degree }=2 \text { over }\left\{x_{2} \neq 0\right\}
\end{gathered}
$$

Normal Form

Change of variables:
$z=T(x)=\left[\begin{array}{c}\phi_{1}(x) \\ \vdots \\ \phi_{n-\rho}(x) \\ --- \\ h(x) \\ \vdots \\ L_{f}^{\rho-1} h(x)\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{c}\phi(x) \\ --- \\ \psi(x)\end{array}\right] \stackrel{\text { def }}{=}\left[\begin{array}{c}\eta \\ -- \\ \xi\end{array}\right]$
ϕ_{1} to $\phi_{n-\rho}$ are chosen such that $T(x)$ is a diffeomorphism on a domain $D_{0} \subset D$

$$
\begin{aligned}
\dot{\eta} & =\frac{\partial \phi}{\partial x}[f(x)+g(x) u]=f_{0}(\eta, \xi)+g_{0}(\eta, \xi) u \\
\dot{\xi}_{i} & =\xi_{i+1}, \quad 1 \leq i \leq \rho-1 \\
\dot{\xi}_{\rho} & =L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u \\
y & =\xi_{1}
\end{aligned}
$$

Choose $\phi(x)$ such that $T(x)$ is a diffeomorphism and

$$
\frac{\partial \phi_{i}}{\partial x} g(x)=0, \text { for } 1 \leq i \leq n-\rho, \forall x \in D_{0}
$$

Always possible (at least locally)

$$
\dot{\eta}=f_{0}(\eta, \xi)
$$

Theorem 13.1: Suppose the system

$$
\dot{x}=f(x)+g(x) u, \quad y=h(x)
$$

has relative degree $\rho(\leq n)$ in D. If $\rho=n$, then for every $x_{0} \in D$, a neighborhood N of x_{0} exists such that the map $T(x)=\psi(x)$, restricted to N, is a diffeomorphism on N. If $\rho<n$, then, for every $x_{0} \in D$, a neighborhood N of x_{0} and smooth functions $\phi_{1}(x), \ldots, \phi_{n-\rho}(x)$ exist such that

$$
\frac{\partial \phi_{i}}{\partial x} g(x)=0, \text { for } 1 \leq i \leq n-\rho
$$

is satisfied for all $x \in N$ and the map $T(x)=\left[\begin{array}{l}\phi(x) \\ \psi(x)\end{array}\right]$,

Normal Form: $\quad \dot{\boldsymbol{\eta}}=\boldsymbol{f}_{0}(\boldsymbol{\eta}, \boldsymbol{\xi})$

$$
\begin{aligned}
& \dot{\xi}_{i}=\xi_{i+1}, \quad 1 \leq i \leq \rho-1 \\
& \dot{\xi}_{\rho}=L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u \\
& y=\xi_{1} \\
& A_{c}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & \ddots & & \vdots \\
\vdots & & & 0 & 1 \\
0 & \ldots & \ldots & 0 & 0
\end{array}\right], B_{c}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
& C_{c}=\left[\begin{array}{lllll}
1 & 0 & \ldots & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\dot{\eta}= & f_{0}(\eta, \xi) \\
\dot{\xi}= & A_{c} \xi+B_{c}\left[L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u\right] \\
y= & C_{c} \xi \\
\gamma(x)= & L_{g} L_{f}^{\rho-1} h(x), \quad \alpha(x)=-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)} \\
& \dot{\xi}=A_{c} \xi+B_{c} \gamma(x)[u-\alpha(x)]
\end{aligned}
$$

If x^{*} is an open-loop equilibrium point at which $y=0$; i.e., $f\left(x^{*}\right)=0$ and $h\left(x^{*}\right)=0$, then $\psi(x *)=0$. Take $\phi\left(x^{*}\right)=0$ so that $z=0$ is an open-loop equilibrium point.

Zero Dynamics

$$
\begin{aligned}
\dot{\eta} & =f_{0}(\eta, \xi) \\
\dot{\xi} & =A_{c} \xi+B_{c} \gamma(x)[u-\alpha(x)] \\
y & =C_{c} \xi \\
y(t) \equiv 0 \Rightarrow \xi(t) & \equiv 0 \Rightarrow u(t) \equiv \alpha(x(t)) \Rightarrow \dot{\eta}=f_{0}(\eta, 0)
\end{aligned}
$$

Definition: The equation $\dot{\boldsymbol{\eta}}=f_{0}(\eta, 0)$ is called the zero dynamics of the system. The system is said to be minimum phase if zero dynamics have an asymptotically stable equilibrium point in the domain of interest (at the origin if $T(0)=0)$

The zero dynamics can be characterized in the x-coordinates

$$
\begin{gathered}
Z^{*}=\left\{x \in D_{0} \mid h(x)=L_{f} h(x)=\cdots=L_{f}^{\rho-1} h(x)=0\right\} \\
y(t) \equiv 0 \Rightarrow x(t) \in Z^{*} \\
\Rightarrow u=\left.u^{*}(x) \stackrel{\text { def }}{=} \alpha(x)\right|_{x \in Z^{*}}
\end{gathered}
$$

The restricted motion of the system is described by

$$
\dot{x}=f^{*}(x) \stackrel{\text { def }}{=}[f(x)+g(x) \alpha(x)]_{x \in Z^{*}}
$$

Example

$$
\begin{gathered}
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u, \quad y=x_{2} \\
\dot{y}=\dot{x}_{2}=-x_{1}+\varepsilon\left(1-x_{1}^{2}\right) x_{2}+u \Rightarrow \rho=1 \\
y(t) \equiv 0 \Rightarrow x_{2}(t) \equiv 0 \Rightarrow \dot{x}_{1}=0 \\
\text { Non-minimum phase }
\end{gathered}
$$

Example

$$
\begin{gathered}
\dot{x}_{1}=-x_{1}+\frac{2+x_{3}^{2}}{1+x_{3}^{2}} u, \dot{x}_{2}=x_{3}, \dot{x}_{3}=x_{1} x_{3}+u, y=x_{2} \\
\dot{y}=\dot{x}_{2}=x_{3} \\
\ddot{y}=\dot{x}_{3}=x_{1} x_{3}+u \Rightarrow \rho=2 \\
\gamma=L_{g} L_{f} h(x)=1, \alpha=-\frac{L_{f}^{2} h(x)}{L_{g} L_{f} h(x)}=-x_{1} x_{3} \\
Z^{*}=\left\{x_{2}=x_{3}=0\right\} \\
u=u^{*}(x)=0 \Rightarrow \dot{x}_{1}=-x_{1}
\end{gathered}
$$

Minimum phase

Find $\phi(x)$ such that

$$
\phi(0)=0, \frac{\partial \phi}{\partial x} g(x)=\left[\frac{\partial \phi}{\partial x_{1}}, \frac{\partial \phi}{\partial x_{2}}, \frac{\partial \phi}{\partial x_{3}}\right]\left[\begin{array}{c}
\frac{2+x_{3}^{2}}{1+x_{3}^{3}} \\
0 \\
1
\end{array}\right]=0
$$

and

$$
T(x)=\left[\begin{array}{lll}
\phi(x) & x_{2} & x_{3}
\end{array}\right]^{T}
$$

is a diffeomorphism

$$
\begin{gathered}
\frac{\partial \phi}{\partial x_{1}} \cdot \frac{2+x_{3}^{2}}{1+x_{3}^{2}}+\frac{\partial \phi}{\partial x_{3}}=0 \\
\phi(x)=-x_{1}+x_{3}+\tan ^{-1} x_{3}
\end{gathered}
$$

$$
T(x)=\left[\begin{array}{lll}
-x_{1}+x_{3}+\tan ^{-1} x_{3}, & x_{2}, & x_{3}
\end{array}\right]^{T}
$$

is a global diffeomorphism

$$
\begin{aligned}
\eta & =-x_{1}+x_{3}+\tan ^{-1} x_{3}, \quad \xi_{1}=x_{2}, \quad \xi_{2}=x_{3} \\
\dot{\eta} & =\left(-\eta+\xi_{2}+\tan ^{-1} \xi_{2}\right)\left(1+\frac{2+\xi_{2}^{2}}{1+\xi_{2}^{2}} \xi_{2}\right) \\
\dot{\xi}_{1} & =\xi_{2} \\
\dot{\xi}_{2} & =\left(-\eta+\xi_{2}+\tan ^{-1} \xi_{2}\right) \xi_{2}+u \\
y & =\xi_{1}
\end{aligned}
$$

