Nonlinear Systems and Control Lecture \# 20

Input-Output Stability

Input-Output Models

$$
\boldsymbol{y}=\boldsymbol{H} \boldsymbol{u}
$$

$u(t)$ is a piecewise continuous function of t and belongs to a linear space of signals

- The space of bounded functions: $\sup _{t \geq 0}\|u(t)\|<\infty$
- The space of square-integrable functions: $\int_{0}^{\infty} u^{T}(t) u(t) d t<\infty$

Norm of a signal $\|u\|$:

- $\|u\| \geq 0$ and $\|u\|=0 \Leftrightarrow u=0$
- $\|a u\|=a\|u\|$ for any $a>0$
- Triangle Inequality: $\left\|u_{1}+u_{2}\right\| \leq\left\|u_{1}\right\|+\left\|u_{2}\right\|$
\mathcal{L}_{p} spaces:

$$
\begin{gathered}
\mathcal{L}_{\infty}:\|u\|_{\mathcal{L}_{\infty}}=\sup _{t \geq 0}\|u(t)\|<\infty \\
\mathcal{L}_{2} ;\|u\|_{\mathcal{L}_{2}}=\sqrt{\int_{0}^{\infty} u^{T}(t) u(t) d t}<\infty
\end{gathered}
$$

$$
\mathcal{L}_{p} ;\|u\|_{\mathcal{L}_{p}}=\left(\int_{0}^{\infty}\|u(t)\|^{p} d t\right)^{1 / p}<\infty, 1 \leq p<\infty
$$

Notation $\mathcal{L}_{p}^{m}: p$ is the type of p-norm used to define the space and m is the dimension of u

Extended Space: $\mathcal{L}_{e}=\left\{u \mid u_{\tau} \in \mathcal{L}, \forall \tau \in[0, \infty)\right\}$
u_{τ} is a truncation of $u: \quad u_{\tau}(t)=\left\{\begin{array}{cc}u(t), & 0 \leq t \leq \boldsymbol{\tau} \\ 0, & t>\tau\end{array}\right.$
\mathcal{L}_{e} is a linear space and $\mathcal{L} \subset \mathcal{L}_{e}$
Example:

$$
u(t)=t, \quad u_{\tau}(t)=\left\{\begin{array}{lc}
t, & 0 \leq t \leq \tau \\
0, & t>\tau
\end{array}\right.
$$

$\boldsymbol{u} \notin \mathcal{L}_{\infty}$ but $u_{\tau} \in \mathcal{L}_{\infty e}$
Causality: A mapping $\boldsymbol{H}: \mathcal{L}_{e}^{m} \rightarrow \mathcal{L}_{e}^{q}$ is causal if the value of the output $(\boldsymbol{H u})(t)$ at any time t depends only on the values of the input up to time t

$$
(H u)_{\tau}=\left(H u_{\tau}\right)_{\tau}
$$

Definition: A mapping $H: \mathcal{L}_{e}^{m} \rightarrow \mathcal{L}_{e}^{q}$ is \mathcal{L} stable if $\exists \alpha \in \mathcal{K}$ $\beta \geq 0$ such that
$\left\|(H u)_{\tau}\right\|_{\mathcal{L}} \leq \alpha\left(\left\|u_{\tau}\right\|_{\mathcal{L}}\right)+\beta, \quad \forall u \in \mathcal{L}_{e}^{m}$ and $\tau \in[0, \infty)$
It is finite-gain \mathcal{L} stable if $\exists \gamma \geq 0$ and $\beta \geq 0$ such that

$$
\left\|(H u)_{\tau}\right\|_{\mathcal{L}} \leq \gamma\left\|u_{\tau}\right\|_{\mathcal{L}}+\beta, \quad \forall u \in \mathcal{L}_{e}^{m} \text { and } \tau \in[0, \infty)
$$

It is small-signal \mathcal{L} stable (respectively, finite-gain \mathcal{L} stable) if $\exists r>0$ such that the inequality is satisfied for all $u \in \mathcal{L}_{e}^{m}$ with $\sup _{0 \leq t \leq \tau}\|u(t)\| \leq r$

Example: Memoryless function $\boldsymbol{y}=\boldsymbol{h}(\boldsymbol{u})$

$$
h(u)=a+b \tanh c u=a+b \frac{e^{c u}-e^{-c u}}{e^{c u}+e^{-c u}}, \quad a, b, c>0
$$

$$
h^{\prime}(u)=\frac{4 b c}{\left(e^{c u}+e^{-c u}\right)^{2}} \leq b c \Rightarrow|h(u)| \leq a+b c|u|, \quad \forall u \in R
$$

Finite-gain \mathcal{L}_{∞} stable with $\beta=a$ and $\gamma=b c$

$$
h(u)=b \tanh c u, \quad|h(u)| \leq b c|u|, \quad \forall u \in R
$$

$$
\int_{0}^{\infty}|h(u(t))|^{p} d t \leq(b c)^{p} \int_{0}^{\infty}|u(t)|^{p} d t, \quad \text { for } p \in[1, \infty)
$$

Finite-gain \mathcal{L}_{p} stable with $\boldsymbol{\beta}=0$ and $\gamma=b c$

$$
\begin{gathered}
h(u)=u^{2} \\
\sup _{t \geq 0}|h(u(t))| \leq\left(\sup _{t \geq 0}|u(t)|\right)^{2}
\end{gathered}
$$

\mathcal{L}_{∞} stable with $\beta=0$ and $\alpha(r)=r^{2}$
It is not finite-gain \mathcal{L}_{∞} stable. Why?

$$
\begin{gathered}
h(u)=\tan u \\
|u| \leq r<\frac{\pi}{2} \Rightarrow|h(u)| \leq\left(\frac{\tan r}{r}\right)|u|
\end{gathered}
$$

Small-signal finite-gain \mathcal{L}_{p} stable with $\beta=0$ and $\gamma=\tan r / r$

Example: SISO causal convolution operator

$$
\begin{aligned}
& \qquad \begin{aligned}
& y(t)=\int_{0}^{t} h(t-\sigma) u(\sigma) d \sigma, \quad h(t)=0 \text { for } t<0 \\
& \text { Suppose } h \in \mathcal{L}_{1} \Leftrightarrow\|h\|_{\mathcal{L}_{1}}=\int_{0}^{\infty}|h(\sigma)| d \sigma<\infty \\
&|y(t)| \leq \int_{0}^{t}|h(t-\sigma)||u(\sigma)| d \sigma \\
& \leq \int_{0}^{t}|h(t-\sigma)| d \sigma \sup _{0 \leq \sigma \leq \tau}|u(\sigma)| \\
&=\int_{0}^{t}|h(s)| d s \sup _{0 \leq \sigma \leq \tau}|u(\sigma)| \\
&\left\|y_{\tau}\right\|_{\mathcal{L}_{\infty}} \leq\|h\|_{\mathcal{L}_{1}}\left\|u_{\tau}\right\|_{\mathcal{L}_{\infty}}, \forall \tau \in[0, \infty)
\end{aligned}
\end{aligned}
$$

Finite-gain \mathcal{L}_{∞} stable
Also, finite-gain \mathcal{L}_{p} stable for $p \in[1, \infty)$ (see textbook)

\mathcal{L} Stability of State Models

$$
\begin{array}{cl}
\dot{x}=f(x, u), & y=h(x, u) \\
0=f(0,0), & 0=h(0,0)
\end{array}
$$

Case 1: The origin of $\dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \mathbf{0})$ is exponentially stable

$$
\begin{gathered}
c_{1}\|x\|^{2} \leq V(x) \leq c_{2}\|x\|^{2} \\
\frac{\partial V}{\partial x} f(x, 0) \leq-c_{3}\|x\|^{2}, \quad\left\|\frac{\partial V}{\partial x}\right\| \leq c_{4}\|x\| \\
\|f(x, u)-f(x, 0)\| \leq L\|u\|, \quad\|h(x, u)\| \leq \eta_{1}\|x\|+\eta_{2}\|u\| \\
\forall\|x\| \leq r \text { and }\|u\| \leq r_{u}
\end{gathered}
$$

$$
\begin{aligned}
& \dot{V}=\frac{\partial V}{\partial x} f(x, 0)+\frac{\partial V}{\partial x}[f(x, u)-f(x, 0)] \\
& \leq-c_{3}\|x\|^{2}+c_{4} L\|x\|\|u\| \leq-\frac{c_{3}}{c_{2}} V+\frac{c_{4} L}{\sqrt{c_{1}}}\|u\| \sqrt{V} \\
& W(t)=\sqrt{V(x(t))} \Rightarrow \dot{W} \leq-\left(\frac{c_{3}}{2 c_{2}}\right) W+\frac{c_{4} L}{2 \sqrt{c_{1}}}\|u(t)\| \\
& W(t) \leq e^{-\frac{t c_{3}}{2 c_{2}}} W(0)+\frac{c_{4} L}{2 \sqrt{c_{1}}} \int_{0}^{t} e^{-\frac{(t-\tau) c_{3}}{2 c_{2}}}\|u(\tau)\| d \tau \\
&\|x(t)\| \leq \sqrt{\frac{c_{2}}{c_{1}}\|x(0)\| e^{-\frac{t c_{3}}{2 c_{2}}}+\frac{c_{4} L}{2 c_{1}} \int_{0}^{t} e^{-\frac{(t-\tau) c_{3}}{2 c_{2}}}\|u(\tau)\| d \tau} \\
&\|y(t)\| \leq k_{0}\|x(0)\| e^{-a t}+k_{2} \int_{0}^{t} e^{-a(t-\tau)}\|u(\tau)\| d \tau+k_{3}\|u(t)\|
\end{aligned}
$$

Theorem 5.1: For each $x(0)$ with $\|x(0)\| \leq r \sqrt{c_{1} / c_{2}}$, the system is small-signal finite-gain \mathcal{L}_{p} stable for each $p \in[1, \infty]$

If the assumptions hold globally, then, for each $x(0) \in R^{n}$, the system is finite-gain \mathcal{L}_{p} stable for each $p \in[1, \infty]$

Example

$$
\begin{gathered}
\dot{x}=-x-x^{3}+u, \quad y=\tanh x+u \\
V=\frac{1}{2} x^{2} \Rightarrow x\left(-x-x^{3}\right) \leq-x^{2} \\
c_{1}=c_{2}=\frac{1}{2}, c_{3}=c_{4}=1, \quad L=\eta_{1}=\eta_{2}=1
\end{gathered}
$$

Finite-gain \mathcal{L}_{p} stable for each $x(0) \in R$ and each $p \in[1, \infty]$

Case 2: The origin of $\dot{x}=f(x, 0)$ is asymptotically stable
Theorem 5.3: Suppose that, for all $(x, u), f$ is locally Lipschitz and h is continuous and satisfies
$\|h(x, u)\| \leq \alpha_{1}(\|x\|)+\alpha_{2}(\|u\|)+\eta, \quad \alpha_{1}, \alpha_{2} \in \mathcal{K}, \eta \geq 0$
If $\dot{x}=f(x, u)$ is ISS, then, for each $x(0) \in R^{n}$, the system

$$
\dot{x}=f(x, u), \quad y=h(x, u)
$$

is \mathcal{L}_{∞} stable

Proof

$$
\begin{gathered}
\|x(t)\| \leq \beta(\|x(0)\|, t)+\gamma\left(\sup _{0 \leq t \leq \tau}\|u(t)\|\right), \beta \in \mathcal{K} \mathcal{L}, \gamma \in \mathcal{K} \\
\|y(t)\| \leq \begin{array}{c}
\alpha_{1}\left(\beta(\|x(0)\|, t)+\gamma\left(\sup _{0 \leq t \leq \tau}\|u(t)\|\right)\right) \\
+\alpha_{2}(\|u(t)\|)+\eta \\
\alpha_{1}(a+b) \leq \alpha_{1}(2 a)+\alpha_{1}(2 b) \\
\|y(t)\| \leq \\
\begin{array}{c}
\alpha_{1}(2 \beta(\|x(0)\|, t))+\alpha_{1}\left(2 \gamma\left(\sup _{0 \leq t \leq \tau}\|u(t)\|\right)\right) \\
\\
+\alpha_{2}(\|u(t)\|)+\eta \\
\left\|y_{\tau}\right\|_{\mathcal{L}_{\infty}} \leq \gamma_{0}\left(\left\|u_{\tau}\right\|_{\mathcal{L}_{\infty}}\right)+\beta_{0}
\end{array} \\
\gamma_{0}=\alpha_{1} \circ 2 \gamma+\alpha_{2} \text { and } \beta_{0}=\alpha_{1}(2 \beta(\|x(0)\|, 0))+\eta
\end{array}
\end{gathered}
$$

Theorem (Rephrasing of Thm 5.2): Suppose f is locally Lipschitz and h is continuous in some neighborhood of ($x=0, u=0$). If the origin of $\dot{x}=f(x, 0)$ is asymptotically stable, then there is a constant $k_{1}>0$ such that for each $x(0)$ with $\|x(0)\|<k_{1}$, the system

$$
\dot{x}=f(x, u), \quad y=h(x, u)
$$

is small-signal \mathcal{L}_{∞} stable

Example

$$
\begin{gathered}
\dot{x}_{1}=-x_{1}^{3}+x_{2}, \quad \dot{x}_{2}=-x_{1}-x_{2}^{3}+u, \quad y=x_{1}+x_{2} \\
V=\left(x_{1}^{2}+x_{2}^{2}\right) \Rightarrow \quad \dot{V}=-2 x_{1}^{4}-2 x_{2}^{4}+2 x_{2} u \\
x_{1}^{4}+x_{2}^{4} \geq \frac{1}{2}\|x\|^{4} \\
\dot{V} \leq-\|x\|^{4}+2\|x\||u| \\
=-(1-\theta)\|x\|^{4}-\theta\|x\|^{4}+2\|x\||u|, \quad 0<\theta<1 \\
\leq-(1-\theta)\|x\|^{4}, \quad \forall\|x\| \geq\left(\frac{2|u|}{\theta}\right)^{1 / 3} \\
\text { ISS }
\end{gathered}
$$

\mathcal{L}_{∞} stable

