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Input-Output Models

y = Hu

u(t) is a piecewise continuous function of t and belongs to
a linear space of signals

The space of bounded functions: supt≥0 ‖u(t)‖ < ∞

The space of square-integrable functions:
∫∞
0 uT (t)u(t) dt < ∞

Norm of a signal ‖u‖:

‖u‖ ≥ 0 and ‖u‖ = 0 ⇔ u = 0

‖au‖ = a‖u‖ for any a > 0

Triangle Inequality: ‖u1 + u2‖ ≤ ‖u1‖ + ‖u2‖
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Lp spaces:

L∞ : ‖u‖L∞
= sup

t≥0
‖u(t)‖ < ∞

L2; ‖u‖L2 =

√

∫ ∞

0
uT (t)u(t) dt < ∞

Lp; ‖u‖Lp
=

(
∫ ∞

0
‖u(t)‖p dt

)1/p

< ∞, 1 ≤ p < ∞

Notation Lm
p : p is the type of p-norm used to define the

space and m is the dimension of u
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Extended Space: Le = {u | uτ ∈ L, ∀ τ ∈ [0, ∞)}

uτ is a truncation of u: uτ (t) =

{

u(t), 0 ≤ t ≤ τ

0, t > τ

Le is a linear space and L ⊂ Le

Example: u(t) = t, uτ (t) =

{

t, 0 ≤ t ≤ τ

0, t > τ

u /∈ L∞ but uτ ∈ L∞e

Causality: A mapping H : Lm
e → Lq

e is causal if the value
of the output (Hu)(t) at any time t depends only on the
values of the input up to time t

(Hu)τ = (Huτ )τ
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Definition: A mapping H : Lm
e → Lq

e is L stable if ∃ α ∈ K
β ≥ 0 such that

‖(Hu)τ ‖L ≤ α (‖uτ ‖L) + β, ∀ u ∈ Lm
e and τ ∈ [0, ∞)

It is finite-gain L stable if ∃ γ ≥ 0 and β ≥ 0 such that

‖(Hu)τ ‖L ≤ γ‖uτ ‖L + β, ∀ u ∈ Lm
e and τ ∈ [0, ∞)

It is small-signal L stable (respectively, finite-gain L stable)
if ∃ r > 0 such that the inequality is satisfied for all u ∈ Lm

e

with sup0≤t≤τ ‖u(t)‖ ≤ r
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Example: Memoryless function y = h(u)

h(u) = a + b tanh cu = a + b
ecu − e−cu

ecu + e−cu
, a, b, c > 0

h′(u) =
4bc

(ecu + e−cu)
2 ≤ bc ⇒ |h(u)| ≤ a+bc|u|, ∀ u ∈ R

Finite-gain L∞ stable with β = a and γ = bc

h(u) = b tanh cu, |h(u)| ≤ bc|u|, ∀ u ∈ R
∫ ∞

0
|h(u(t))|p dt ≤ (bc)p

∫ ∞

0
|u(t)|p dt, for p ∈ [1, ∞)

Finite-gain Lp stable with β = 0 and γ = bc
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h(u) = u2

sup
t≥0

|h(u(t))| ≤
(

sup
t≥0

|u(t)|
)2

L∞ stable with β = 0 and α(r) = r2

It is not finite-gain L∞ stable. Why?

h(u) = tan u

|u| ≤ r <
π

2
⇒ |h(u)| ≤

(

tan r

r

)

|u|

Small-signal finite-gain Lp stable with β = 0 and γ = tan r/r
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Example: SISO causal convolution operator

y(t) =

∫ t

0
h(t − σ)u(σ) dσ, h(t) = 0 for t < 0

Suppose h ∈ L1 ⇔ ‖h‖L1 =

∫ ∞

0
|h(σ)| dσ < ∞

|y(t)| ≤
∫ t
0 |h(t − σ)| |u(σ)| dσ

≤
∫ t
0 |h(t − σ)| dσ sup0≤σ≤τ |u(σ)|

=
∫ t
0 |h(s)| ds sup0≤σ≤τ |u(σ)|

‖yτ ‖L∞
≤ ‖h‖L1‖uτ ‖L∞

, ∀ τ ∈ [0, ∞)

Finite-gain L∞ stable

Also, finite-gain Lp stable for p ∈ [1, ∞) (see textbook)
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L Stability of State Models

ẋ = f(x, u), y = h(x, u)

0 = f(0, 0), 0 = h(0, 0)

Case 1: The origin of ẋ = f(x, 0) is exponentially stable

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∂V

∂x
f(x, 0) ≤ −c3‖x‖2,

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ c4‖x‖

‖f(x, u)−f(x, 0)‖ ≤ L‖u‖, ‖h(x, u)‖ ≤ η1‖x‖+η2‖u‖
∀ ‖x‖ ≤ r and ‖u‖ ≤ ru
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V̇ = ∂V
∂x f(x, 0) + ∂V

∂x [f(x, u) − f(x, 0)]

≤ −c3‖x‖2 + c4L‖x‖ ‖u‖ ≤ − c3

c2
V + c4L√

c1
‖u‖

√
V

W (t) =
√

V (x(t)) ⇒ Ẇ ≤ −
(

c3

2c2

)

W +
c4L

2
√

c1
‖u(t)‖

W (t) ≤ e
− tc3

2c2 W (0) +
c4L

2
√

c1

∫ t

0
e

− (t−τ )c3
2c2 ‖u(τ )‖ dτ

‖x(t)‖ ≤
√

c2

c1
‖x(0)‖e

− tc3
2c2 +

c4L

2c1

∫ t

0
e

− (t−τ )c3
2c2 ‖u(τ )‖ dτ

‖y(t)‖ ≤ k0‖x(0)‖e−at+k2

∫ t

0
e−a(t−τ )‖u(τ )‖ dτ+k3 ‖u(t)‖
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Theorem 5.1: For each x(0) with ‖x(0)‖ ≤ r
√

c1/c2, the
system is small-signal finite-gain Lp stable for each
p ∈ [1, ∞]

If the assumptions hold globally, then, for each x(0) ∈ Rn,
the system is finite-gain Lp stable for each p ∈ [1, ∞]

Example

ẋ = −x − x3 + u, y = tanh x + u

V = 1
2x2 ⇒ x(−x − x3) ≤ −x2

c1 = c2 = 1
2
, c3 = c4 = 1, L = η1 = η2 = 1

Finite-gain Lp stable for each x(0) ∈ R and each p ∈ [1, ∞]
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Case 2: The origin of ẋ = f(x, 0) is asymptotically stable

Theorem 5.3: Suppose that, for all (x, u), f is locally
Lipschitz and h is continuous and satisfies

‖h(x, u)‖ ≤ α1(‖x‖) + α2(‖u‖) + η, α1, α2 ∈ K, η ≥ 0

If ẋ = f(x, u) is ISS, then, for each x(0) ∈ Rn, the system

ẋ = f(x, u), y = h(x, u)

is L∞ stable
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Proof

‖x(t)‖ ≤ β(‖x(0)‖, t)+γ

(

sup
0≤t≤τ

‖u(t)‖
)

, β ∈ KL, γ ∈ K

‖y(t)‖ ≤ α1

(

β(‖x(0)‖, t) + γ
(

sup0≤t≤τ ‖u(t)‖
))

+ α2(‖u(t)‖) + η

α1(a + b) ≤ α1(2a) + α1(2b)

‖y(t)‖ ≤ α1 (2β(‖x(0)‖, t)) + α1

(

2γ
(

sup0≤t≤τ ‖u(t)‖
))

+ α2(‖u(t)‖) + η

‖yτ ‖L∞
≤ γ0 (‖uτ ‖L∞

) + β0

γ0 = α1 ◦ 2γ + α2 and β0 = α1(2β(‖x(0)‖, 0)) + η
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Theorem (Rephrasing of Thm 5.2): Suppose f is locally
Lipschitz and h is continuous in some neighborhood of
(x = 0, u = 0). If the origin of ẋ = f(x, 0) is
asymptotically stable, then there is a constant k1 > 0 such
that for each x(0) with ‖x(0)‖ < k1, the system

ẋ = f(x, u), y = h(x, u)

is small-signal L∞ stable
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Example

ẋ1 = −x3
1 + x2, ẋ2 = −x1 − x3

2 + u, y = x1 + x2

V = (x2
1 + x2

2) ⇒ V̇ = −2x4
1 − 2x4

2 + 2x2u

x4
1 + x4

2 ≥ 1
2‖x‖4

V̇ ≤ −‖x‖4 + 2‖x‖|u|
= −(1 − θ)‖x‖4 − θ‖x‖4 + 2‖x‖|u|, 0 < θ < 1

≤ −(1 − θ)‖x‖4, ∀ ‖x‖ ≥
(

2|u|
θ

)1/3

ISS

L∞ stable
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