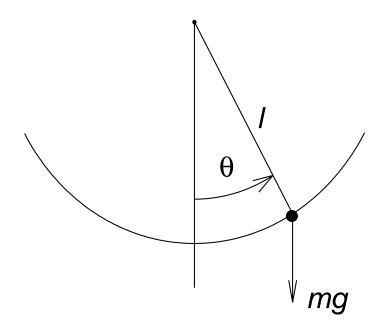
Nonlinear Systems and Control Lecture # 2 Examples of Nonlinear Systems

Pendulum Equation



$$ml\ddot{ heta} = -mg\sin{ heta} - kl\dot{ heta}$$

$$x_1= heta,\quad x_2=\dot{ heta}$$

$$egin{array}{lll} \dot{x}_1 & = & x_2 \ \dot{x}_2 & = & -rac{g}{l}\sin x_1 - rac{k}{m}x_2 \end{array}$$

Equilibrium Points:

$$egin{array}{ll} 0&=&x_2\ 0&=&-rac{g}{l}\sin x_1-rac{k}{m}x_2\ (n\pi,0)& ext{for }n=0,\pm 1,\pm 2,\ldots \end{array}$$

Nontrivial equilibrium points at (0,0) and $(\pi,0)$

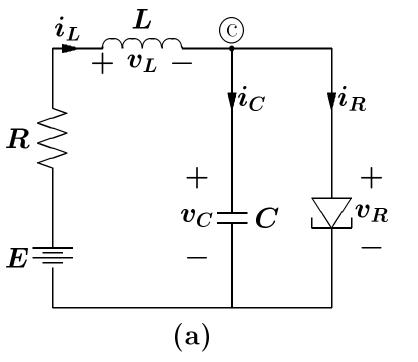
Pendulum without friction:

$$egin{array}{lll} \dot{x}_1 &=& x_2 \ \dot{x}_2 &=& -rac{g}{l}\sin x_1 \end{array}$$

Pendulum with torque input:

$$egin{array}{lll} \dot{x}_1 &=& x_2 \ \dot{x}_2 &=& -rac{g}{l}\sin x_1 - rac{k}{m}x_2 + rac{1}{ml^2}T \end{array}$$

Tunnel-Diode Circuit





$$i_C = C rac{dv_C}{dt}, ~~ v_L = L rac{di_L}{dt}$$

$$x_1=v_C, \ \ x_2=i_L, \quad u=E$$

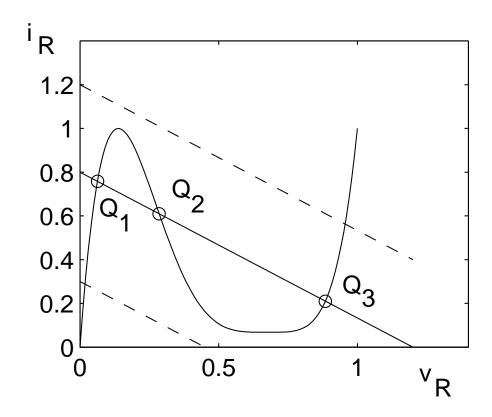
$$egin{aligned} i_C + i_R - i_L &= 0 & \Rightarrow & i_C &= -h(x_1) + x_2 \ v_C - E + Ri_L + v_L &= 0 & \Rightarrow & v_L &= -x_1 - Rx_2 + u \end{aligned}$$

$$egin{array}{lll} \dot{x}_1 &=& rac{1}{C} \left[-h(x_1) + x_2
ight] \ \dot{x}_2 &=& rac{1}{L} \left[-x_1 - Rx_2 + u
ight] \end{array}$$

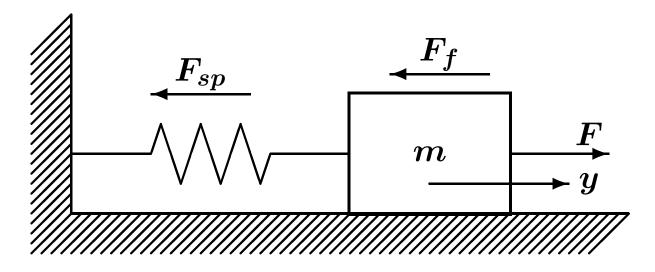
Equilibrium Points:

$$egin{array}{lll} 0 &=& -h(x_1) + x_2 \ 0 &=& -x_1 - Rx_2 + u \end{array}$$

$$h(x_1)=rac{E}{R}-rac{1}{R}x_1$$



Mass-Spring System



$$m\ddot{y}+F_f+F_{sp}=F$$

Sources of nonlinearity:

- Nonlinear spring restoring force $F_{sp} = g(y)$
- Static or Coulomb friction

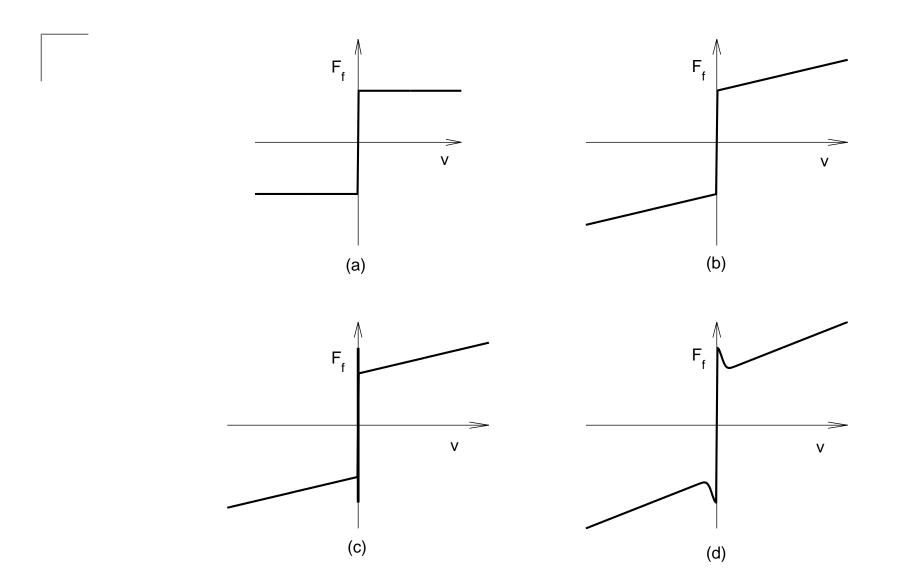
$$F_{sp}=g(y)$$

$$g(y)=k(1-a^2y^2)y, \ \ |ay|<1 \ \ ext{(softening spring)}$$
 $g(y)=k(1+a^2y^2)y \ \ ext{(hardening spring)}$

 F_f may have components due to static, Coulomb, and viscous friction

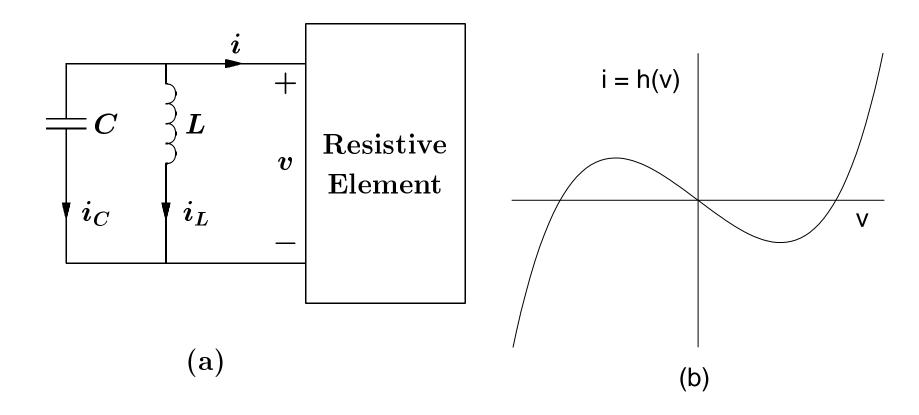
When the mass is at rest, there is a static friction force F_s that acts parallel to the surface and is limited to $\pm \mu_s mg$ (0 < μ_s < 1). F_s takes whatever value, between its limits, to keep the mass at rest

Once motion has started, the resistive force F_f is modeled as a function of the sliding velocity $v=\dot{y}$



(a) Coulomb friction; (b) Coulomb plus linear viscous friction; (c) static, Coulomb, and linear viscous friction; (d) static, Coulomb, and linear viscous friction—Stribeck effect

Negative-Resistance Oscillator



$$h(0) = 0, \quad h'(0) < 0$$

$$h(v) \to \infty \text{ as } v \to \infty, \text{ and } h(v) \to -\infty \text{ as } v \to -\infty$$

$$i_C + i_L + i = 0$$

$$Crac{dv}{dt} + rac{1}{L}\int_{-\infty}^{t}v(s)\;ds + h(v) = 0$$

Differentiating with respect to t and multiplying by L:

$$CLrac{d^2v}{dt^2} + v + Lh'(v)rac{dv}{dt} = 0$$
 $au = t/\sqrt{CL}$ $rac{dv}{d au} = \sqrt{CL}rac{dv}{dt}, \qquad rac{d^2v}{d au^2} = CLrac{d^2v}{dt^2}$

Denote the derivative of v with respect to au by \dot{v}

$$\ddot{v} + arepsilon h'(v)\dot{v} + v = 0, \quad arepsilon = \sqrt{L/C}$$

Special case: Van der Pol equation

$$h(v) = -v + \frac{1}{3}v^3$$

$$\ddot{v} - \varepsilon (1 - v^2)\dot{v} + v = 0$$

State model: $x_1 = v, \quad x_2 = \dot{v}$

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 - \varepsilon h'(x_1)x_2$$

Another State Model: $z_1=i_L, \quad z_2=v_C$

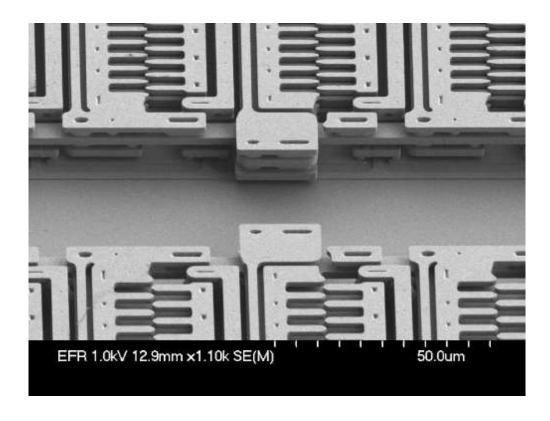
$$egin{array}{lll} \dot{z}_1 &=& rac{1}{arepsilon} z_2 \ \dot{z}_2 &=& -arepsilon[z_1+h(z_2)] \end{array}$$

Change of variables: z = T(x)

$$egin{array}{lcl} x_1 & = & v = z_2 \ x_2 & = & rac{dv}{d au} = \sqrt{CL}rac{dv}{dt} = \sqrt{rac{L}{C}}[-i_L - h(v_C)] \ & = & arepsilon[-z_1 - h(z_2)] \end{array}$$

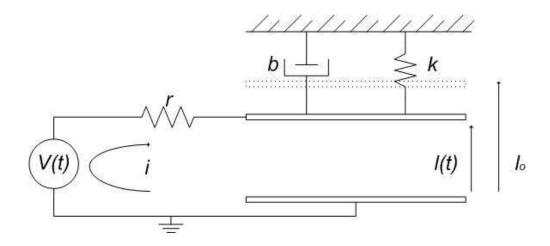
$$T(x) = \left[egin{array}{c} -h(x_1) - rac{1}{arepsilon} x_2 \ x_1 \end{array}
ight], \,\, T^{-1}(z) = \left[egin{array}{c} z_2 \ -arepsilon z_1 - arepsilon h(z_2) \end{array}
ight]$$

Electrostatically Actuated MEMS:



(from www.memx.com)

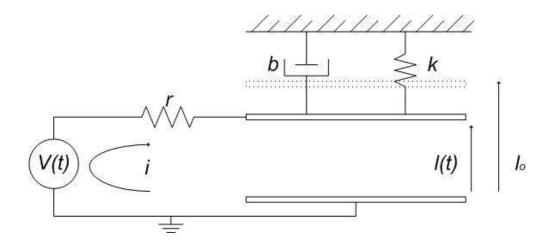
Electrostatically Actuated MEMS:



v(t) input control voltage; Q(t) charge of the device; i(t) current; l(t) air gap; $l_0(t)$ zero voltage gap; A plate area; ϵ permittivity in the gap

Attractive electrostatic force: $F(t) = \frac{Q(t)^2}{2\epsilon A}$

Electrostatically Actuated MEMS:



$$egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} \dot{Q}(t) &= i(t) \end{array} &= & -b \dot{l}(t) - k(l(t) - l_0) - rac{Q^2(t)}{2\epsilon A} \ \dot{Q}(t) &= i(t) \end{array} &= & rac{1}{r} \left[v(t) - rac{Q(t) l(t)}{\epsilon A}
ight] \end{array}$$