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Nonlinear Systems and Control

L ecture# 2
Examples of Nonlinear Systems



fPendulum Equation
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Equilibrium Points:
0 = X9
. k
= — —SINnIry — —I9
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(nm,0) for n =0,41,42,...

Nontrivial equilibrium points at (0,0) and (7, 0)
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fPendulum without friction:

T1 = T2
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Pendulum with torque input:

1 = o2
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fTunneI-Diode Circuit
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ic+ip—1; =0 = ’I:C:—h(xl)—l—atz

vo —F+Rig +vp =0 = vy =—x1 — Rxas+u

Ci?l = — [—h(a:l) —|— CBQ]
m.g = — [—ml — R(Eg —+ u]

Equilibrium Points:

0
0

—h(a:l) —|— o
—x1 — Rxs + u
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fMass—Spring System
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Sources of nonlinearity:
# Nonlinear spring restoring force Fs, = g(y)

L # Static or Coulomb friction
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Fsp = g(y)

g(y) = k(1 — a’y®)y, |ay| <1 (softening

spring)

g(y) = k(1 + a*y?)y (hardening spring)
F; may have components due to static, Coulomb, and

viscous friction

When the mass iIs at rest, there Is a static friction

force F

that acts parallel to the surface and is limited to -
(0 < pus < 1). F, takes whatever value, between
to keep the mass at rest

= [Ls TG
Its limits,

Once motion has started, the resistive force F; is modeled

as a function of the sliding velocity v = y
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(a) (b)

© (d)

(a) Coulomb friction; (b) Coulomb plus linear viscous friction; (c) static, Coulomb, and linear

viscous friction; (d) static, Coulomb, and linear viscous friction—Stribeck effect —
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fNegative-Resistance Oscillator

(/
et i = h(v)
L

Resistive

Element

(a) (b)

h(0) =0, hA'(0) <O

\— h(v) - coasv — o0, and h(v) - —ocoas v — —o©
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tc+1iL+1=0

c 1S (s) ds + h(v) = 0
E—I—E v(s) ds V) =

— OO

Differentiating with respect to ¢ and multiplying by L:

CLd% + v + LA/( )dv 0

—— 4 v vV)— =

dt? dt
T=t/vCL

dv dv d?v d?v
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fDenote the derivative of v with respect to = by v

v +eh'(v)O+v=0, e=+/L/C

Special case: Van der Pol eqguation
h(v) = —v + %’v?’

bD—e(l—v)o+v=0

State model: 1 = v, xo =7

$.2 = —a:l—eh'(azl):ng
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fAnother State Model: 23 =iz, 22 = vo

Z.l = —Z92
2.2 = —€[zl—l—h(22)]

Change of variables: =z = T'(x)

ry = VV = 29
vy = O = VOIT = \[ 21~z — h(vo)
— 8[—21 — h(ZQ)]
i — xr — l.ﬁB ] i < ]
T(x) = h( 1531 - L2 ’ T_l(z) _ e _2€h(z2)
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~ Electrostatically Actuated MEMS:
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(from www.memx.com)
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~ Electrostatically Actuated MEMS:

v(t) input control voltage; Q(t) charge of the device; #(t)
current; I(t) air gap; lo(t) zero voltage gap; A plate area, ¢
permittivity in the gap

Attractive electrostatic force: F'(t) = Q)

2¢ A
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~ Electrostatically Actuated MEMS:

P #

2
ml(t) = —bi(t) — k(l(t) —lp) — Qzei)
aw =i = o - LLE
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