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Perturbed Systems: Nonvanishing Perturbation

Nominal System:

ẋ = f(x), f(0) = 0

Perturbed System:

ẋ = f(x) + g(t, x), g(t, 0) 6= 0

Case 1: The origin of ẋ = f(x) is exponentially stable

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∂V

∂x
f(x) ≤ −c3‖x‖2,

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ c4‖x‖

∀ x ∈ Br = {‖x‖ ≤ r}
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Use V (x) to investigate ultimate boundedness of the
perturbed system

V̇ (t, x) =
∂V

∂x
f(x) +

∂V

∂x
g(t, x)

Assume
‖g(t, x)‖ ≤ δ, ∀ t ≥ 0, x ∈ Br

V̇ (t, x) ≤ −c3‖x‖2 +
∥

∥

∥

∂V
∂x

∥

∥

∥
‖g(t, x)‖

≤ −c3‖x‖2 + c4δ‖x‖
= −(1 − θ)c3‖x‖2 − θc3‖x‖2 + c4δ‖x‖

0 < θ < 1

≤ −(1 − θ)c3‖x‖2, ∀ ‖x‖ ≥ δc4/(θc3)
def
= µ
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Apply Theorem 4.18

‖x(t0)‖ ≤ α−1

2
(α1(r)) ⇔ ‖x(t0)‖ ≤ r

√

c1

c2

µ < α−1

2
(α1(r)) ⇔ δc4

θc3

< r

√

c1

c2

⇔ δ <
c3

c4

√

c1

c2

θr

b = α−1

1
(α2(µ)) ⇔ b = µ

√

c2

c1

⇔ b =
δc4

θc3

√

c2

c1

For all ‖x(t0)‖ ≤ r
√

c1/c2, the solutions of the perturbed
system are ultimately bounded by b
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Example

ẋ1 = x2, ẋ2 = −4x1 − 2x2 + βx3

2
+ d(t)

β ≥ 0, |d(t)| ≤ δ, ∀ t ≥ 0

V (x) = xT Px = xT
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x (Lecture 13)

V̇ (t, x) = −‖x‖2 + 2βx2

2

(

1

8
x1x2 + 5

16
x2

2

)

+ 2d(t)
(

1

8
x1 + 5

16
x2

)

≤ −‖x‖2 +

√
29

8
βk2

2
‖x‖2 +

√
29δ

8
‖x‖
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k2 = max
xT P x≤c

|x2| = 1.8194
√

c

Suppose β ≤ 8(1 − ζ)/(
√

29k2

2
) (0 < ζ < 1)

V̇ (t, x) ≤ −ζ‖x‖2 +
√

29δ
8

‖x‖
≤ −(1 − θ)ζ‖x‖2, ∀ ‖x‖ ≥

√
29δ

8ζθ

def
= µ

(0 < θ < 1)

If µ2λmax(P ) < c, then all solutions of the perturbed
system, starting in Ωc, are uniformly ultimately bounded by

b =

√
29δ

8ζθ

√

λmax(P )

λmin(P )
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Case 2: The origin of ẋ = f(x) is asymptotically stable

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

∂V

∂x
f(x) ≤ −α3(‖x‖),

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ k

∀ x ∈ Br = {‖x‖ ≤ r}, αi ∈ K, i = 1, 2, 3

V̇ (t, x) ≤ −α3(‖x‖) +
∥

∥

∥

∂V
∂x

∥

∥

∥
‖g(t, x)‖

≤ −α3(‖x‖) + δk

≤ −(1 − θ)α3(‖x‖) − θα3(‖x‖) + δk

0 < θ < 1

≤ −(1 − θ)α3(‖x‖), ∀ ‖x‖ ≥ α−1

3

(

δk
θ

)

def
= µ
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Apply Theorem 4.18

µ < α−1

2
(α1(r)) ⇔ α−1

3

(

δk

θ

)

< α−1

2
(α1(r))

⇔ δ <
θα3(α

−1

2
(α1(r)))

k
Compare with δ <

c3

c4

√

c1

c2

θr

Example

ẋ = − x

1 + x2

V (x) = x4 ⇒
∂V

∂x

[

−
x

1 + x2

]

= −
4x4

1 + x2

α1(|x|) = α2(|x|) = |x|4; α3(|x|) =
4|x|4

1 + |x|2
; k = 4r3
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The origin is globally asymptotically stable

θα3(α
−1

2
(α1(r)))

k
=

θα3(r)

k
=

rθ

1 + r2

rθ

1 + r2
→ 0 as r → ∞

ẋ = −
x

1 + x2
+ δ, δ > 0

δ > 1

2
⇒ lim

t→∞
x(t) = ∞
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Input-to-State Stability (ISS)

Definition: The system ẋ = f(x, u) is input-to-state stable if
there exist β ∈ KL and γ ∈ K such that for any initial state
x(t0) and any bounded input u(t)

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ

(

sup
t0≤τ≤t

‖u(τ )‖
)

ISS of ẋ = f(x, u) implies
BIBS stability

x(t) is ultimately bounded by a class K function of
supt≥t0 ‖u(t)‖

limt→∞ u(t) = 0 ⇒ limt→∞ x(t) = 0

The origin of ẋ = f(x, 0) is GAS
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Theorem (Special case of Thm 4.19): Let V (x) be a
continuously differentiable function such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

∂V

∂x
f(x, u) ≤ −W3(x), ∀ ‖x‖ ≥ ρ(‖u‖) > 0

∀ x ∈ Rn, u ∈ Rm, where α1, α2 ∈ K∞, ρ ∈ K, and
W3(x) is a continuous positive definite function. Then, the
system ẋ = f(x, u) is ISS with γ = α−1

1
◦ α2 ◦ ρ

Proof: Let µ = ρ(supτ≥t0‖u(τ )‖); then

∂V

∂x
f(x, u) ≤ −W3(x), ∀ ‖x‖ ≥ µ
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Choose ε and c such that

∂V

∂x
f(x, u) ≤ −W3(x), ∀ x ∈ Λ = {ε ≤ V (x) ≤ c}

Suppose x(t0) ∈ Λ and x(t) reaches Ωε at t = t0 + T . For
t0 ≤ t ≤ t0 + T , V satisfies the conditions for the uniform
asymptotic stability. Therefore, the trajectory behaves as if
the origin was uniformly asymptotically stable and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), for some β ∈ KL

For t ≥ t0 + T ,

‖x(t)‖ ≤ α−1

1
(α2(µ))
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‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + α−1

1
(α2(µ)), ∀ t ≥ t0

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ

(

sup
τ≥t0

‖u(τ )‖
)

, ∀ t ≥ t0

Since x(t) depends only on u(τ ) for t0 ≤ τ ≤ t, the
supremum on the right-hand side can be taken over [t0, t]
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Example
ẋ = −x3 + u

The origin of ẋ = −x3 is globally asymptotically stable

V = 1

2
x2

V̇ = −x4 + xu

= −(1 − θ)x4 − θx4 + xu

≤ −(1 − θ)x4, ∀ |x| ≥
(

|u|
θ

)1/3

0 < θ < 1

The system is ISS with

γ(r) = (r/θ)1/3
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Example
ẋ = −x − 2x3 + (1 + x2)u2

The origin of ẋ = −x − 2x3 is globally exponentially stable

V = 1

2
x2

V̇ = −x2 − 2x4 + x(1 + x2)u2

= x4 − x2(1 + x2) + x(1 + x2)u2

≤ −x4, ∀ |x| ≥ u2

The system is ISS with γ(r) = r2
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Example

ẋ1 = −x1 + x2

2
, ẋ2 = −x2 + u

Investigate GAS of ẋ1 = −x1 + x2

2
, ẋ2 = −x2

V (x) = 1

2
x2

1
+ 1

4
x4

2

V̇ = −x2

1
+ x1x

2

2
− x4

2
= −(x1 − 1

2
x2

2
)2 −

(

1 − 1

4

)

x4

2

Now u 6= 0, V̇ = −1

2
(x1 − x2

2
)2 − 1

2
(x2

1
+ x4

2
) + x3

2
u

≤ −1

2
(x2

1
+ x4

2
) + |x2|3|u|

V̇ ≤ −1

2
(1 − θ)(x2

1
+ x4

2
) − 1

2
θ(x2

1
+ x4

2
) + |x2|3|u|

(0 < θ < 1)
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−1

2
θ(x2

1
+ x4

2
) + |x2|3|u| ≤ 0

if |x2| ≥ 2|u|
θ

or |x2| ≤ 2|u|
θ

and |x1| ≥
(

2|u|
θ

)2

if ‖x‖ ≥ 2|u|
θ

√

1 +

(

2|u|
θ

)2

ρ(r) =
2r

θ

√

1 +

(

2r

θ

)2

V̇ ≤ −1

2
(1 − θ)(x2

1
+ x4

2
), ∀ ‖x‖ ≥ ρ(|u|)

The system is ISS

– p. 17/18



Find γ

V (x) = 1

2
x2

1
+ 1

4
x4

2

For |x2| ≤ |x1|, 1

4
(x2

1
+ x2

2
) ≤ 1

4
x2

1
+ 1

4
x2

1
= 1

2
x2

1
≤ V (x)

For |x2| ≥ |x1|, 1

16
(x2

1
+x2

2
)2 ≤ 1

16
(x2

2
+x2

2
)2 = 1

4
x4

2
≤ V (x)

min
{

1

4
‖x‖2, 1

16
‖x‖4

}

≤ V (x) ≤ 1

2
‖x‖2 + 1

4
‖x‖4

α1(r) = 1

4
min

{

r2, 1

4
r4
}

, α2(r) = 1

2
r2 + 1

4
r4

γ = α−1

1
◦ α2 ◦ ρ

α−1

1
(s) =

{

2(s)
1

4 , if s ≤ 1

2
√

s, if s ≥ 1
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