Nonlinear Systems and Control Lecture \# 18

Boundedness

\&
Ultimate Boundedness

Definition: The solutions of $\dot{x}=f(t, x)$ are

- uniformly bounded if $\exists c>0$ and for every $0<a<c, \exists \beta=\beta(a)>0$ such that

$$
\left\|x\left(t_{0}\right)\right\| \leq a \Rightarrow\|x(t)\| \leq \beta, \quad \forall t \geq t_{0} \geq 0
$$

- uniformly ultimately bounded with ultimate bound b if $\exists b$ and c and for every $0<a<c, \exists T=T(a, b) \geq 0$ such that

$$
\left\|x\left(t_{0}\right)\right\| \leq a \Rightarrow\|x(t)\| \leq b, \quad \forall t \geq t_{0}+T
$$

"Globally" if \boldsymbol{a} can be arbitrarily large

$$
\text { Drop "uniformly" if } \dot{x}=f(x)
$$

Lyapunov Analysis: Let $V(x)$ be a cont. diff. positive definite function and suppose that the sets
$\Omega_{c}=\{V(x) \leq c\}, \Omega_{\varepsilon}=\{V(x) \leq \varepsilon\}, \Lambda=\{\varepsilon \leq V(x) \leq c\}$
are compact for some $c>\varepsilon>0$

Suppose

$$
\dot{V}(t, x)=\frac{\partial V}{\partial x} f(t, x) \leq-W_{3}(x), \quad \forall x \in \Lambda, \forall t \geq 0
$$

$W_{3}(x)$ is continuous and positive definite
Ω_{c} and Ω_{ε} are positively invariant

$$
\begin{gathered}
k=\min _{x \in \Lambda} W_{3}(x)>0 \\
\dot{V}(t, x) \leq-k, \quad \forall x \in \Lambda, \forall t \geq t_{0} \geq 0 \\
V(x(t)) \leq V\left(x\left(t_{0}\right)\right)-k\left(t-t_{0}\right) \leq c-k\left(t-t_{0}\right)
\end{gathered}
$$

$x(t)$ enters the set Ω_{ε} within the interval $\left[t_{0}, t_{0}+(c-\varepsilon) / k\right]$

Suppose

$$
\dot{V}(t, x) \leq-W_{3}(x), \quad \forall \mu \leq\|x\| \leq r, \forall t \geq 0
$$

Choose c and ε such that $\Lambda \subset\{\mu \leq\|x\| \leq r\}$

Let α_{1} and α_{2} be class \mathcal{K} functions such that

$$
\begin{gathered}
\alpha_{1}(\|x\|) \leq V(x) \leq \alpha_{2}(\|x\|) \\
V(x) \leq c \Rightarrow \alpha_{1}(\|x\|) \leq c \Leftrightarrow\|x\| \leq \alpha_{1}^{-1}(c) \\
c=\alpha_{1}(r) \Rightarrow \Omega_{c} \subset B_{r} \\
\|x\| \leq \mu \Rightarrow V(x) \leq \alpha_{2}(\mu) \\
\varepsilon=\alpha_{2}(\mu) \Rightarrow B_{\mu} \subset \Omega_{\varepsilon}
\end{gathered}
$$

What is the ultimate bound?
$V(x) \leq \varepsilon \Rightarrow \alpha_{1}(\|x\|) \leq \varepsilon \Leftrightarrow\|x\| \leq \alpha_{1}^{-1}(\varepsilon)=\alpha_{1}^{-1}\left(\alpha_{2}(\mu)\right)$

Theorem (special case of Thm 4.18): Suppose

$$
\alpha_{1}(\|x\|) \leq V(x) \leq \alpha_{2}(\|x\|)
$$

$$
\frac{\partial V}{\partial x} f(t, x) \leq-W_{3}(x), \quad \forall\|x\| \geq \mu>0
$$

$\forall t \geq 0$ and $\|x\| \leq r$, where $\alpha_{1}, \alpha_{2} \in \mathcal{K}, W_{3}(x)$ is continuous \& positive definite, and $\mu<\alpha_{2}^{-1}\left(\alpha_{1}(r)\right)$. Then, for every initial state $x\left(t_{0}\right) \in\left\{\|x\| \leq \alpha_{2}^{-1}\left(\alpha_{1}(r)\right)\right\}$, there is $T \geq 0$ (dependent on $x\left(t_{0}\right)$ and μ) such that

$$
\|x(t)\| \leq \alpha_{1}^{-1}\left(\alpha_{2}(\mu)\right), \quad \forall t \geq t_{0}+T
$$

If the assumptions hold globally and $\alpha_{1} \in \mathcal{K}_{\infty}$, then the conclusion holds for any initial state $x\left(\boldsymbol{t}_{0}\right)$

Remarks:

- The ultimate bound is independent of the initial state
- The ultimate bound is a class \mathcal{K} function of μ; hence, the smaller the value of μ, the smaller the ultimate bound. As $\mu \rightarrow 0$, the ultimate bound approaches zero

Example

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-\left(1+x_{1}^{2}\right) x_{1}-x_{2}+M \cos \omega t, \quad M \geq 0
$$

$$
\text { With } M=0, \quad \dot{x}_{2}=-\left(1+x_{1}^{2}\right) x_{1}-x_{2}=-h\left(x_{1}\right)-x_{2}
$$

$$
V(x)=x^{T}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] x+2 \int_{0}^{x_{1}}\left(y+y^{3}\right) d y \text { (Example 4.5) }
$$

$$
V(x)=x^{T}\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] x+\frac{1}{2} x_{1}^{4} \stackrel{\text { def }}{=} x^{T} P x+\frac{1}{2} x_{1}^{4}
$$

$$
\begin{gathered}
\lambda_{\text {min }}(P)\|x\|^{2} \leq V(x) \leq \lambda_{\max }(P)\|x\|^{2}+\frac{1}{2}\|x\|^{4} \\
\alpha_{1}(r)=\lambda_{\min }(P) r^{2}, \quad \alpha_{2}(r)=\lambda_{\max }(P) r^{2}+\frac{1}{2} r^{4} \\
\dot{V}=-x_{1}^{2}-x_{1}^{4}-x_{2}^{2}+\left(x_{1}+2 x_{2}\right) M \cos \omega \\
\leq-\|x\|^{2}-x_{1}^{4}+M \sqrt{5}\|x\| \\
=-(1-\theta)\|x\|^{2}-x_{1}^{4}-\theta\|x\|^{2}+M \sqrt{5}\|x\| \\
\quad(0<\theta<1) \\
\leq-(1-\theta)\|x\|^{2}-x_{1}^{4}, \quad \forall\|x\| \geq M \sqrt{5} / \theta \stackrel{\text { def }}{=} \mu
\end{gathered}
$$

The solutions are GUUB by

$$
b=\alpha_{1}^{-1}\left(\alpha_{2}(\mu)\right)=\sqrt{\frac{\lambda_{\max }(P) \mu^{2}+\mu^{4} / 2}{\lambda_{\min }(P)}}
$$

