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Boundedness
&

Ultimate Boundedness
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Definition: The solutions of ẋ = f(t, x) are

uniformly bounded if ∃ c > 0 and for every
0 < a < c, ∃ β = β(a) > 0 such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ β, ∀ t ≥ t0 ≥ 0

uniformly ultimately bounded with ultimate bound b if
∃ b and c and for every 0 < a < c, ∃ T = T (a, b) ≥ 0
such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b, ∀ t ≥ t0 + T

“Globally” if a can be arbitrarily large

Drop “uniformly” if ẋ = f(x)
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Lyapunov Analysis: Let V (x) be a cont. diff. positive
definite function and suppose that the sets

Ωc = {V (x) ≤ c}, Ωε = {V (x) ≤ ε}, Λ = {ε ≤ V (x) ≤ c}

are compact for some c > ε > 0

Ωε
cΩ

Λ
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Suppose

V̇ (t, x) =
∂V

∂x
f(t, x) ≤ −W3(x), ∀ x ∈ Λ, ∀ t ≥ 0

W3(x) is continuous and positive definite

Ωc and Ωε are positively invariant

k = min
x∈Λ

W3(x) > 0

V̇ (t, x) ≤ −k, ∀ x ∈ Λ, ∀ t ≥ t0 ≥ 0

V (x(t)) ≤ V (x(t0)) − k(t − t0) ≤ c − k(t − t0)

x(t) enters the set Ωε within the interval [t0, t0 + (c − ε)/k]
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Suppose

V̇ (t, x) ≤ −W3(x), ∀ µ ≤ ‖x‖ ≤ r, ∀ t ≥ 0

Choose c and ε such that Λ ⊂ {µ ≤ ‖x‖ ≤ r}

B
r

B
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µ

c

Ωε
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Let α1 and α2 be class K functions such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

V (x) ≤ c ⇒ α1(‖x‖) ≤ c ⇔ ‖x‖ ≤ α−1

1
(c)

c = α1(r) ⇒ Ωc ⊂ Br

‖x‖ ≤ µ ⇒ V (x) ≤ α2(µ)

ε = α2(µ) ⇒ Bµ ⊂ Ωε

What is the ultimate bound?

V (x) ≤ ε ⇒ α1(‖x‖) ≤ ε ⇔ ‖x‖ ≤ α−1

1
(ε) = α−1

1
(α2(µ))
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Theorem (special case of Thm 4.18): Suppose

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

∂V

∂x
f(t, x) ≤ −W3(x), ∀ ‖x‖ ≥ µ > 0

∀ t ≥ 0 and ‖x‖ ≤ r, where α1, α2 ∈ K, W3(x) is
continuous & positive definite, and µ < α−1

2
(α1(r)). Then,

for every initial state x(t0) ∈ {‖x‖ ≤ α−1

2
(α1(r))}, there is

T ≥ 0 (dependent on x(t0) and µ) such that

‖x(t)‖ ≤ α−1

1
(α2(µ)), ∀ t ≥ t0 + T

If the assumptions hold globally and α1 ∈ K∞, then the
conclusion holds for any initial state x(t0)
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Remarks:

The ultimate bound is independent of the initial state

The ultimate bound is a class K function of µ; hence,
the smaller the value of µ, the smaller the ultimate
bound. As µ → 0, the ultimate bound approaches zero
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Example

ẋ1 = x2, ẋ2 = −(1 + x2

1
)x1 − x2 + M cos ωt, M ≥ 0

With M = 0, ẋ2 = −(1 + x2

1
)x1 − x2 = −h(x1) − x2

V (x) = xT







1

2

1

2

1

2
1






x + 2

∫ x1

0

(y + y3) dy (Example 4.5)

V (x) = xT
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λmin(P )‖x‖2 ≤ V (x) ≤ λmax(P )‖x‖2 + 1

2
‖x‖4

α1(r) = λmin(P )r2, α2(r) = λmax(P )r2 + 1

2
r4

V̇ = −x2

1
− x4

1
− x2

2
+ (x1 + 2x2)M cos ω

≤ −‖x‖2 − x4

1
+ M

√
5‖x‖

= −(1 − θ)‖x‖2 − x4

1
− θ‖x‖2 + M

√
5‖x‖

(0 < θ < 1)

≤ −(1 − θ)‖x‖2 − x4

1
, ∀ ‖x‖ ≥ M

√
5/θ

def
= µ

The solutions are GUUB by

b = α−1

1
(α2(µ)) =

√

λmax(P )µ2 + µ4/2

λmin(P )
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