Nonlinear Systems and Control Lecture \# 15

Positive Real Transfer Functions
Connection with Lyapunov Stability

Definition: A $p \times p$ proper rational transfer function matrix $G(s)$ is positive real if

- poles of all elements of $G(s)$ are in $\operatorname{Re}[s] \leq 0$
- for all real ω for which $j \omega$ is not a pole of any element of $G(s)$, the matrix $G(j \omega)+G^{T}(-j \omega)$ is positive semidefinite
- any pure imaginary pole $j \omega$ of any element of $G(s)$ is a simple pole and the residue matrix $\lim _{s \rightarrow j \omega}(s-j \omega) G(s)$ is positive semidefinite Hermitian
$G(s)$ is called strictly positive real if $G(s-\varepsilon)$ is positive real for some $\varepsilon>0$

Scalar Case ($p=1$):

$$
G(j \omega)+G^{T}(-j \omega)=2 \operatorname{Re}[G(j \omega)]
$$

$\operatorname{Re}[G(j \omega)]$ is an even function of ω.
The second condition of the definition reduces to

$$
\operatorname{Re}[G(j \omega)] \geq 0, \forall \omega \in[0, \infty)
$$

which holds when the Nyquist plot of of $G(j \omega)$ lies in the closed right-half complex plane

This is true only if the relative degree of the transfer function is zero or one
Note: for $G(s)=\frac{n(s)}{d(s)}$, the relative degree is degd-degn.

$$
G(j \omega)=\frac{1}{j \omega+1}
$$

Bode plot

Nyquist Diagram

Nyquist plot

$$
G(j \omega)=\frac{1}{(j \omega)^{2}+j \omega+1}
$$

Bode plot

Nyquist Diagram

Nyquist plot

Lemma: Suppose $\operatorname{det}\left[G(s)+G^{T}(-s)\right]$ is not identically zero. Then, $G(s)$ is strictly positive real if and only if

- $G(s)$ is Hurwitz
- $G(j \omega)+G^{T}(-j \omega)>0, \forall \omega \in R$
- $G(\infty)+G^{T}(\infty)>0$ or it is positive semidefinte and

$$
\lim _{\omega \rightarrow \infty} \omega^{2} M^{T}\left[G(j \omega)+G^{T}(-j \omega)\right] M>0
$$

for any $p \times(p-q)$ full-rank matrix M such that

$$
\begin{aligned}
& M^{T}\left[G(\infty)+G^{T}(\infty)\right] M=0 \in R^{(p-q) \times(p-q)} \\
q= & \operatorname{rank}\left[G(\infty)+G^{T}(\infty)\right]
\end{aligned}
$$

If $G(\infty)+G^{T}(\infty)$ is singular, the third condition ensures that $G(j \omega)+G^{T}(-j \omega)$ has

- \boldsymbol{q} singular values with

$$
\lim _{\omega \rightarrow \infty} \sigma_{i}(\omega)>0
$$

- $(p-q)$ singular values with

$$
\lim _{\omega \rightarrow \infty} \sigma_{i}(\omega)=0, \quad \lim _{\omega \rightarrow \infty} \omega^{2} \sigma_{i}(\omega)>0
$$

Scalar Case ($p=1$): $G(s)$ is strictly positive real if and only if

- $G(s)$ is Hurwitz
- $\operatorname{Re}[G(j \omega)]>0, \forall \omega \in[0, \infty)$
- $G(\infty)>0$ or $G(\infty)=0$ and

$$
\lim _{\omega \rightarrow \infty} \omega^{2} \operatorname{Re}[G(j \omega)]>0
$$

Example:

$$
G(s)=\frac{1}{s}
$$

has a simple pole at $s=0$ whose residue is 1

$$
\operatorname{Re}[G(j \omega)]=\operatorname{Re}\left[\frac{1}{j \omega}\right]=0, \quad \forall \omega \neq 0
$$

Hence, G is positive real. It is not strictly positive real since

$$
\frac{1}{(s-\varepsilon)}
$$

has a pole in $\operatorname{Re}[s]>0$ for any $\varepsilon>0$

Example:

$$
G(s)=\frac{1}{s+a}, a>0, \text { is Hurwitz }
$$

$$
\operatorname{Re}[G(j \omega)]=\frac{a}{\omega^{2}+a^{2}}>0, \forall \omega \in[0, \infty)
$$

$\lim _{\omega \rightarrow \infty} \omega^{2} \operatorname{Re}[G(j \omega)]=\lim _{\omega \rightarrow \infty} \frac{\omega^{2} a}{\omega^{2}+a^{2}}=a>0 \Rightarrow G$ is SPR

Example:

$$
G(s)=\frac{1}{s^{2}+s+1}, \quad \operatorname{Re}[G(j \omega)]=\frac{1-\omega^{2}}{\left(1-\omega^{2}\right)^{2}+\omega^{2}}
$$

G is not $P R$

Example:

$$
G(s)=\left[\begin{array}{cc}
\frac{s+2}{s+1} & \frac{1}{s+2} \\
\frac{-1}{s+2} & \frac{2}{s+1}
\end{array}\right] \text { is Hurwitz }
$$

$$
G(j \omega)+G^{T}(-j \omega)=\left[\begin{array}{cc}
\frac{2\left(2+\omega^{2}\right)}{1+\omega^{2}} & \frac{-2 j \omega}{4+\omega^{2}} \\
\frac{2 j \omega}{4+\omega^{2}} & \frac{4}{1+\omega^{2}}
\end{array}\right]>0, \forall \omega \in R
$$

$$
G(\infty)+G^{T}(\infty)=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], \quad M=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$\lim _{\omega \rightarrow \infty} \omega^{2} M^{T}\left[G(j \omega)+G^{T}(-j \omega)\right] M=4 \Rightarrow G$ is SPR

Positive Real Lemma: Let

$$
G(s)=C(s I-A)^{-1} B+D
$$

where (A, B) is controllable and (A, C) is observable. $G(s)$ is positive real if and only if there exist matrices $P=P^{T}>0, L$, and W such that

$$
\begin{aligned}
P A+A^{T} P & =-L^{T} L \\
P B & =C^{T}-L^{T} W \\
W^{T} W & =D+D^{T}
\end{aligned}
$$

Kalman-Yakubovich-Popov Lemma: Let

$$
G(s)=C(s I-A)^{-1} B+D
$$

where (A, B) is controllable and (A, C) is observable. $G(s)$ is strictly positive real if and only if there exist matrices $P=P^{T}>0, L$, and W, and a positive constant ε such that

$$
\begin{aligned}
P A+A^{T} P & =-L^{T} L-\varepsilon P \\
P B & =C^{T}-L^{T} W \\
W^{T} W & =D+D^{T}
\end{aligned}
$$

Lemma: The linear time-invariant minimal realization

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

with

$$
G(s)=C(s I-A)^{-1} B+D
$$

is

- passive if $G(s)$ is positive real
- strictly passive if $G(s)$ is strictly positive real

Proof: Apply the PR and KYP Lemmas, respectively, and use $V(x)=\frac{1}{2} x^{T} P x$ as the storage function

$$
\begin{aligned}
u^{T} y- & \frac{\partial V}{\partial x} f(x, u)=u^{T} y-\frac{\partial V}{\partial x}(A x+B u) \\
= & u^{T}(C x+D u)-x^{T} P(A x+B u) \\
= & u^{T} C x+\frac{1}{2} u^{T}\left(D+D^{T}\right) u \\
& -\frac{1}{2} x^{T}\left(P A+A^{T} P\right) x-x^{T} P B u \\
= & u^{T}\left(B^{T} P+W^{T} L\right) x+\frac{1}{2} u^{T} W^{T} W u \\
& +\frac{1}{2} x^{T} L^{T} L x+\frac{1}{2} \varepsilon x^{T} P x-x^{T} P B u \\
= & \frac{1}{2}(L x+W u)^{T}(L x+W u)+\frac{1}{2} \varepsilon x^{T} P x \geq \frac{1}{2} \varepsilon x^{T} P x
\end{aligned}
$$

In the case of the PR Lemma, $\varepsilon=0$, and we conclude that the system is passive; in the case of the KYP Lemma, $\varepsilon>0$, and we conclude that the system is strictly passive

Connection with Lyapunov Stability

Lemma: If the system

$$
\dot{x}=f(x, u), \quad y=h(x, u)
$$

is passive with a positive definite storage function $V(x)$, then the origin of $\dot{x}=f(x, 0)$ is stable

Proof:

$$
u^{T} y \geq \frac{\partial V}{\partial x} f(x, u) \Rightarrow \frac{\partial V}{\partial x} f(x, 0) \leq 0
$$

Lemma: If the system

$$
\dot{x}=f(x, u), \quad y=h(x, u)
$$

is strictly passive, then the origin of $\dot{x}=f(x, 0)$ is asymptotically stable. Furthermore, if the storage function is radially unbounded, the origin will be globally asymptotically stable

Proof: The storage function $\boldsymbol{V}(\boldsymbol{x})$ is positive definite

$$
u^{T} y \geq \frac{\partial V}{\partial x} f(x, u)+\psi(x) \Rightarrow \frac{\partial V}{\partial x} f(x, 0) \leq-\psi(x)
$$

Why is $V(x)$ positive definite?
Let $\phi(t ; x)$ be the solution of $\dot{z}=f(z, 0), z(0)=x$

$$
\begin{gathered}
\dot{V} \leq-\psi(x) \\
V(\phi(\tau, x))-V(x) \leq-\int_{0}^{\tau} \psi(\phi(t ; x)) d t, \forall \tau \in[0, \delta] \\
V(\phi(\tau, x)) \geq 0 \Rightarrow V(x) \geq \int_{0}^{\tau} \psi(\phi(t ; x)) d t \\
V(\bar{x})=0 \Rightarrow \int_{0}^{\tau} \psi(\phi(t ; \bar{x})) d t=0, \forall \tau \in[0, \delta] \\
\Rightarrow \psi(\phi(t ; \bar{x})) \equiv 0 \Rightarrow \phi(t ; \bar{x}) \equiv 0 \Rightarrow \bar{x}=0
\end{gathered}
$$

Definition: The system

$$
\dot{x}=f(x, u), \quad y=h(x, u)
$$

is zero-state observable if no solution of $\dot{x}=f(x, 0)$ can stay identically in $S=\{h(x, 0)=0\}$, other than the zero solution $x(t) \equiv 0$

Linear Systems

$$
\dot{x}=A x, \quad y=C x
$$

Observability of (A, C) is equivalent to

$$
y(t)=C e^{A t} x(0) \equiv 0 \Leftrightarrow x(0)=0 \Leftrightarrow x(t) \equiv 0
$$

If (A, C) is observable

$$
y(t)=C e^{A t} x(0) \equiv 0 \Leftrightarrow x(0)=0
$$

Proof: (\Leftarrow) trivial
(\Rightarrow) Suppose not, i.e., $y(t)=C e^{A t} x(0) \equiv 0 \Rightarrow x(0) \neq 0$
Cayley Hamilton $\left[\sum_{k=0}^{n-1} \alpha_{k}(t) C A^{k}\right] x(0) \equiv 0$

$$
\Leftrightarrow\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] x(0) \equiv 0
$$

Lemma: If the system

$$
\dot{x}=f(x, u), \quad y=h(x, u)
$$

is output strictly passive and zero-state observable, then the origin of $\dot{x}=f(x, 0)$ is asymptotically stable.
Furthermore, if the storage function is radially unbounded, the origin will be globally asymptotically stable

Proof: The storage function $V(x)$ is positive definite

$$
\begin{gathered}
u^{T} y \geq \frac{\partial V}{\partial x} f(x, u)+y^{T} \rho(y) \Rightarrow \frac{\partial V}{\partial x} f(x, 0) \leq-y^{T} \rho(y) \\
\dot{V}(x(t)) \equiv 0 \Rightarrow y(t) \equiv 0 \Rightarrow x(t) \equiv 0
\end{gathered}
$$

Apply the invariance principle

Example

$$
\begin{gathered}
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-a x_{1}^{3}-k x_{2}+u, \quad y=x_{2}, \quad a, k>0 \\
V(x)=\frac{1}{4} a x_{1}^{4}+\frac{1}{2} x_{2}^{2} \\
\dot{V}=a x_{1}^{3} x_{2}+x_{2}\left(-a x_{1}^{3}-k x_{2}+u\right)=-k y^{2}+y u
\end{gathered}
$$

The system is output strictly passive

$$
y(t) \equiv 0 \Leftrightarrow x_{2}(t) \equiv 0 \Rightarrow a x_{1}^{3}(t) \equiv 0 \Rightarrow x_{1}(t) \equiv 0
$$

The system is zero-state observable. \boldsymbol{V} is radially unbounded. Hence, the origin of the unforced system is globally asymptotically stable

