
Nonlinear Systems and Control
Lecture # 15

Positive Real Transfer Functions
&

Connection with Lyapunov Stability
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Definition: A p× p proper rational transfer function matrix
G(s) is positive real if

poles of all elements of G(s) are in Re[s] ≤ 0

for all real ω for which jω is not a pole of any element of
G(s), the matrix G(jω) +GT (−jω) is positive
semidefinite

any pure imaginary pole jω of any element of G(s) is a
simple pole and the residue matrix
lims→jω(s− jω)G(s) is positive semidefinite Hermitian

G(s) is called strictly positive real if G(s− ε) is positive real
for some ε > 0
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Scalar Case (p = 1):

G(jω) +GT (−jω) = 2Re[G(jω)]

Re[G(jω)] is an even function of ω.
The second condition of the definition reduces to

Re[G(jω)] ≥ 0, ∀ ω ∈ [0,∞)

which holds when the Nyquist plot of of G(jω) lies in the
closed right-half complex plane

This is true only if the relative degree of the transfer function
is zero or one
Note: for G(s) = n(s)

d(s) , the relative degree is degd-degn.
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G(jω) =
1

jω + 1
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G(jω) =
1

(jω)2 + jω + 1
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Lemma: Suppose det [G(s) +GT (−s)] is not identically
zero. Then, G(s) is strictly positive real if and only if

G(s) is Hurwitz

G(jω) +GT (−jω) > 0, ∀ ω ∈ R

G(∞) +GT (∞) > 0 or it is positive semidefinte and

lim
ω→∞

ω2MT [G(jω) +GT (−jω)]M > 0

for any p× (p− q) full-rank matrix M such that

MT [G(∞) +GT (∞)]M = 0 ∈ R(p−q)×(p−q)

q = rank[G(∞) +GT (∞)]
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If G(∞) +GT (∞) is singular, the third condition ensures
that G(jω) +GT (−jω) has

q singular values with

lim
ω→∞

σi(ω) > 0

(p− q) singular values with

lim
ω→∞

σi(ω) = 0, lim
ω→∞

ω2σi(ω) > 0
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Scalar Case (p = 1): G(s) is strictly positive real if and only
if

G(s) is Hurwitz

Re[G(jω)] > 0, ∀ ω ∈ [0,∞)

G(∞) > 0 or G(∞) = 0 and

lim
ω→∞

ω2Re[G(jω)] > 0
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Example:

G(s) =
1

s

has a simple pole at s = 0 whose residue is 1

Re[G(jω)] = Re

[

1

jω

]

= 0, ∀ ω 6= 0

Hence, G is positive real. It is not strictly positive real
since

1

(s− ε)

has a pole in Re[s] > 0 for any ε > 0
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Example:

G(s) =
1

s+ a
, a > 0, is Hurwitz

Re[G(jω)] =
a

ω2 + a2
> 0, ∀ ω ∈ [0,∞)

lim
ω→∞

ω2Re[G(jω)] = lim
ω→∞

ω2a

ω2 + a2
= a > 0 ⇒ G is SPR

Example:

G(s) =
1

s2 + s+ 1
, Re[G(jω)] =

1 − ω2

(1 − ω2)2 + ω2

G is not PR
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Example:

G(s) =







s+2
s+1

1
s+2

−1
s+2

2
s+1






is Hurwitz

G(jω) +GT (−jω) =







2(2+ω2)
1+ω2

−2jω
4+ω2

2jω
4+ω2

4
1+ω2






> 0, ∀ ω ∈ R

G(∞) +GT (∞) =

[

2 0

0 0

]

, M =

[

0

1

]

lim
ω→∞

ω2MT [G(jω) +GT (−jω)]M = 4 ⇒ G is SPR
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Positive Real Lemma: Let

G(s) = C(sI −A)−1B +D

where (A,B) is controllable and (A,C) is observable.
G(s) is positive real if and only if there exist matrices
P = P T > 0, L, and W such that

PA+ATP = −LTL

PB = CT − LTW

W TW = D +DT
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Kalman–Yakubovich–Popov Lemma: Let

G(s) = C(sI −A)−1B +D

where (A,B) is controllable and (A,C) is observable.
G(s) is strictly positive real if and only if there exist matrices
P = P T > 0, L, and W , and a positive constant ε such
that

PA+ATP = −LTL− εP

PB = CT − LTW

W TW = D +DT
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Lemma: The linear time-invariant minimal realization

ẋ = Ax+Bu

y = Cx+Du

with
G(s) = C(sI −A)−1B +D

is

passive if G(s) is positive real

strictly passive if G(s) is strictly positive real

Proof: Apply the PR and KYP Lemmas, respectively, and
use V (x) = 1

2
xTPx as the storage function
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uTy −
∂V

∂x
f(x, u) = uTy −

∂V

∂x
(Ax+Bu)

= uT (Cx+Du) − xTP (Ax+Bu)

= uTCx+ 1
2
uT (D +DT )u

− 1
2x

T (PA +ATP )x− xTPBu

= uT (BTP +W TL)x+ 1
2
uTW TWu

+ 1
2x

TLTLx+ 1
2εx

TPx− xTPBu

= 1
2(Lx+Wu)T (Lx+Wu) + 1

2εx
TPx ≥ 1

2εx
TPx

In the case of the PR Lemma, ε = 0, and we conclude that
the system is passive; in the case of the KYP Lemma,
ε > 0, and we conclude that the system is strictly passive
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Connection with Lyapunov Stability

Lemma: If the system

ẋ = f(x, u), y = h(x, u)

is passive with a positive definite storage function V (x),
then the origin of ẋ = f(x, 0) is stable

Proof:

uTy ≥
∂V

∂x
f(x, u) ⇒

∂V

∂x
f(x, 0) ≤ 0
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Lemma: If the system

ẋ = f(x, u), y = h(x, u)

is strictly passive, then the origin of ẋ = f(x, 0) is
asymptotically stable. Furthermore, if the storage function
is radially unbounded, the origin will be globally
asymptotically stable

Proof: The storage function V (x) is positive definite

uTy ≥
∂V

∂x
f(x, u) + ψ(x) ⇒

∂V

∂x
f(x, 0) ≤ −ψ(x)

Why is V (x) positive definite?
Let φ(t;x) be the solution of ż = f(z, 0), z(0) = x
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V̇ ≤ −ψ(x)

V (φ(τ, x)) − V (x) ≤ −

∫ τ

0
ψ(φ(t;x)) dt, ∀ τ ∈ [0, δ]

V (φ(τ, x)) ≥ 0 ⇒ V (x) ≥

∫ τ

0
ψ(φ(t;x)) dt

V (x̄) = 0 ⇒

∫ τ

0
ψ(φ(t; x̄)) dt = 0, ∀ τ ∈ [0, δ]

⇒ ψ(φ(t; x̄)) ≡ 0 ⇒ φ(t; x̄) ≡ 0 ⇒ x̄ = 0
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Definition: The system

ẋ = f(x, u), y = h(x, u)

is zero-state observable if no solution of ẋ = f(x, 0) can
stay identically in S = {h(x, 0) = 0}, other than the zero
solution x(t) ≡ 0

Linear Systems

ẋ = Ax, y = Cx

Observability of (A,C) is equivalent to

y(t) = CeAtx(0) ≡ 0 ⇔ x(0) = 0 ⇔ x(t) ≡ 0
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If (A,C) is observable

y(t) = CeAtx(0) ≡ 0 ⇔ x(0) = 0

Proof: (⇐) trivial
(⇒) Suppose not, i.e., y(t) = CeAtx(0) ≡ 0 ⇒ x(0) 6= 0

Cayley Hamilton

[

n−1
∑

k=0

αk(t)CA
k

]

x(0) ≡ 0

⇔













C

CA
...

CAn−1













x(0) ≡ 0
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Lemma: If the system

ẋ = f(x, u), y = h(x, u)

is output strictly passive and zero-state observable, then
the origin of ẋ = f(x, 0) is asymptotically stable.
Furthermore, if the storage function is radially unbounded,
the origin will be globally asymptotically stable

Proof: The storage function V (x) is positive definite

uTy ≥
∂V

∂x
f(x, u) + yTρ(y) ⇒

∂V

∂x
f(x, 0) ≤ −yTρ(y)

V̇ (x(t)) ≡ 0 ⇒ y(t) ≡ 0 ⇒x(t) ≡ 0

Apply the invariance principle
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Example

ẋ1 = x2, ẋ2 = −ax3
1 − kx2 + u, y = x2, a, k > 0

V (x) = 1
4ax

4
1 + 1

2x
2
2

V̇ = ax3
1x2 + x2(−ax

3
1 − kx2 + u) = −ky2 + yu

The system is output strictly passive

y(t) ≡ 0 ⇔ x2(t) ≡ 0 ⇒ ax3
1(t) ≡ 0 ⇒ x1(t) ≡ 0

The system is zero-state observable. V is radially
unbounded. Hence, the origin of the unforced system is
globally asymptotically stable
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