Nonlinear Systems and Control
L ecture# 15
Positive Real Transfer Functions

&
Connection with Lyapunov Stability



fDefinition: A p X p proper rational transfer function matrix
G (s) Is positive real if

# poles of all elements of G(s) are in Re[s] < 0

o for all real w for which jw is not a pole of any element of
G(s), the matrix G(jw) + G* (—jw) is positive
semidefinite

# any pure imaginary pole jw of any element of G(s) Is a
simple pole and the residue matrix
lims_, (s — jw)G(s) Is positive semidefinite Hermitian

G (s) Is called strictly positive real if G(s — €) Is positive real
forsomee > 0

o
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fScaIar Case (p = 1):
G(jw) + G' (—jw) = 2Re[G(jw)]

Re|G(jw)] is an even function of w.
The second condition of the definition reduces to

Re|G(jw)] 2 0, Vw € [0, 00)

which holds when the Nyquist plot of of G(jw) lies in the
closed right-half complex plane

This Is true only if the relative degree of the transfer function
IS zero or one

Note: for G(s) = 28, the relative degree is degd-degn.

L d(s)’
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fLemma: Suppose det [G(s) + G* (—s)] is not identically
zero. Then, G(s) Is strictly positive real if and only if

#® G(s) Is Hurwitz

® G(jw)+Gl(—jw) >0, VweER

® G(o0) + G' (o) > 0 oritis positive semidefinte and
Jlim. WCMT[G(jw) + GT (—jw)|M > 0

for any p x (p — q) full-rank matrix M such that
MT[G(OO) + GT(oo)]M — 0 € RP—9)x(p—q)

\_ q = rank[G(oco0) + G1'(c0)]
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flf G(oc0) + GT (o0) is singular, the third condition ensures
that G(jw) + GT' (—jw) has

# ¢ singular values with

lim o;(w) >0

w— 00

® (p — q) singular values with

lim o;(w) =0, lim w?0;(w) >0
w—>00 w—>00
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fScaIar Case (p = 1): G(s) Is strictly positive real if and only
if
#® G(s) Is Hurwitz
® Re|lG(jw)] >0, Vw € [0,00)
® G(o0) > 0o0r G(oco) = 0 and

lim w?Re[G(jw)] > 0

w— 00
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Example:
1
G(s) = —
S

has a simple pole at s = 0 whose residue is 1

Re|G(jw)] = Re 1 =0, Vw#0

Jw

Hence, G Is positive real. It is not strictly positive real

since
1

(s —¢)

has a pole in Re[s] > 0foranye > 0

o
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G(s) = ——, a > 0, IsHurwitz
s+ a
, B a
RelG(jw)] = ———3 >0, Vw € [0,00)
. 2 . . wza' .
lim wRe|G(jw)] = lim =a>0 = GIsSPR
W— 00 Ww—00 (Y2 4+ a?
Example:
1 1 — w?
G — 0 R G ) p—
(5) s24+s+1 elGw)] (1 — w?)? + w?
G is not PR

o
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~ Example:
~ s+2 1

s+1 s+2
G(s) = IS Hurwitz
—1 2
| s+2 s+1
T 2(24w?)  —2jw
1+w? 4-4+w?
G(jw) + Gt (—jw) = >0, YwER
2w 4
L 4+4w? 14+w? J
2 0 0
G (oo Gl (0) = M =
(00) +GT(o0) = | = 0|, 1

lim w?MT[G(jw) + Gt (—jw)]M =4 = GisSPR

w— 00
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fPositive Real Lemma: Let
G(s)=C(sI — A" 'B+D

where (A, B) Is controllable and (A, C) is observable.
G (s) Is positive real iIf and only if there exist matrices

P = PT > 0, L, and W such that

PA+ AP LT
PB ct —1Tw
wiw = D4+ DT
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fKaIman—Yakubovich—Popov Lemma: Let
G(s)=C(sI — A" 'B+D

where (A, B) Is controllable and (A, C) is observable.
G (s) Is strictly positive real if and only if there exist matrices

P = PT > 0, L, and W, and a positive constant ¢ such
that

PA 1+ ATP _ILTrL —eP
PB cl — LTw
wW'w = D+ D'
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Lemma: The linear time-invariant minimal realization

r = Ax -+ Bu
Y Cx + Du

with

G(s)=C(sI —A)"'B+D
IS
# passive If G(s) is positive real

# strictly passive if G(s) Is strictly positive real

Proof: Apply the PR and KYP Lemmas, respectively, and
use V(z) = zzT Pz as the storage function

o
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f oV oV
u'y — —f(z,u) = u'y — —(Azx + Bu)
ox ox

ul' (Cx + Du) — ' P(Ax + Bu)
= uw!l'Cx + %uT(D + DT)u
— %:cT(PA + ATP)z — ' PBu
= ' (B'"P+W'L)z + zu" WIWu
+ %wTLTLZB + %ea:TPa: — ' PBu
= %(Lw + Wu)l (Lx + Wu) + %ewTPa: > %ewTPa:

In the case of the PR Lemma, € = 0, and we conclude that
the system is passive; in the case of the KYP Lemma,
Le > 0, and we conclude that the system is strictly passive
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fConnection with Lyapunov Stability

Lemma: If the system

i = f(z,u), y=h(zu)

IS passive with a positive definite storage function V (x),
then the origin of & = f(«,0) Is stable

Proof:

oV oV
uTy > —f(z,u) = —f(x,0) <0
or or
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fLemma: If the system
= f(x,u), y = h(x,u)

IS strictly passive, then the origin of & = f(x,0) IS
asymptotically stable. Furthermore, if the storage function
IS radially unbounded, the origin will be globally
asymptotically stable

Proof: The storage function V' (x) is positive definite

1Y% 1Y%
ul'y > — flz,u) + () = —f(z,0) < —YP(x)
T ox

Why is V (x) positive definite?
LLet o(t; ) be the solution of 2 = f(2,0), 2(0) = =
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V < —9(x)
V(d(r,z)) — Viz) < — /0 " (d(tia)) dt, VT € [0,d
V(g(r,2) >0 = V(z)> /()Txb(qs(t;w)) dt

V(z) =0 = /()sz(qb(t;a"z)) dt =0,V T €[0,0]

= Y(o(t;2) =0 = ¢(t;2) =0 = =0



fDefinition: The system
= f(x,u), y = h(x,u)

IS zero-state observable if no solution of & = f(x,0) can
stay identically in S = {h(x,0) = 0}, other than the zero
solution z(t) =0

Linear Systems
r—=Ax, y=Cx

Observabillity of (A, C) Is equivalent to

]
=

y(t) = CeMz(0) =0 < z(0) =0 < x=(t)

o
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flf (A, C) Is observable

y(t) = Cetz(0) =0 < z(0) =0

Proof: (<) trivial

(=) Suppose not, i.e., y(t) = CeAtz(0) = 0 = x(0) # 0

Cayley Hamilton

n—1

2

k=0

C
CA

o c A1

ka(t)(jfik

x(0) =0

x(0) =0
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~ Lemma: If the system

i = f(z,u), y=h(zu)

IS output strictly passive and zero-state observable, then
the origin of & = f(x, 0) Is asymptotically stable.
Furthermore, if the storage function is radially unbounded,
the origin will be globally asymptotically stable

Proof: The storage function V' (x) Is positive definite

oV oV
u'y > ——f(@,u) +y ply) = ——f(x,0) < -y p(y)
T Ox
V() =0 = yt) =0=z(t) =0
LAppIy the invariance principle
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fExampIe o

[ ] [ ] 3
r1 = T2, L2 = —axr] —kra+u, y=x2, a,k >0
1.4 1.2
Vix) = 10T + 55

V = a,a;‘;’:cz -+ azg(—a,a;‘;’ — kxo + u) = —ky? + yu

The system is output strictly passive
y(t) =0 & x3(t) =0 = axi(t) =0 = z1(t) =0

The system is zero-state observable. V is radially
unbounded. Hence, the origin of the unforced system is
globally asymptotically stable

o
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