Nonlinear Systems and Control Lecture \# 13 Perturbed Systems

Nominal System:

$$
\dot{x}=f(x), \quad f(0)=0
$$

Perturbed System:

$$
\dot{x}=f(x)+g(t, x), \quad g(t, 0)=0
$$

Case 1: The origin of the nominal system is exponentially stable

$$
\begin{gathered}
c_{1}\|x\|^{2} \leq V(x) \leq c_{2}\|x\|^{2} \\
\frac{\partial V}{\partial x} f(x) \leq-c_{3}\|x\|^{2} \\
\left\|\frac{\partial V}{\partial x}\right\| \leq c_{4}\|x\|
\end{gathered}
$$

Use $\boldsymbol{V}(\boldsymbol{x})$ as a Lyapunov function candidate for the perturbed system

$$
\dot{V}(t, x)=\frac{\partial V}{\partial x} f(x)+\frac{\partial V}{\partial x} g(t, x)
$$

Assume that

$$
\|g(t, x)\| \leq \gamma\|x\|, \quad \gamma \geq 0
$$

$$
\begin{aligned}
\dot{V}(t, x) & \leq-c_{3}\|x\|^{2}+\left\|\frac{\partial V}{\partial x}\right\|\|g(t, x)\| \\
& \leq-c_{3}\|x\|^{2}+c_{4} \gamma\|x\|^{2}
\end{aligned}
$$

$$
\begin{gathered}
\gamma<\frac{c_{3}}{c_{4}} \\
\dot{V}(t, x) \leq-\left(c_{3}-\gamma c_{4}\right)\|x\|^{2}
\end{gathered}
$$

The origin is an exponentially stable equilibrium point of the perturbed system

Example

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-4 x_{1}-2 x_{2}+\beta x_{2}^{3}, \quad \beta \geq 0 \\
& \dot{x}=A x+g(x) \\
& A=\left[\begin{array}{rr}
0 & 1 \\
-4 & -2
\end{array}\right], \quad g(x)=\left[\begin{array}{c}
0 \\
\beta x_{2}^{3}
\end{array}\right]
\end{aligned}
$$

The eigenvalues of A are $-1 \pm j \sqrt{3}$

$$
P A+A^{T} P=-I \Rightarrow P=\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{8} \\
\frac{1}{8} & \frac{5}{16}
\end{array}\right]
$$

For the quadratic Lyapunv function $V(x)=x^{T} P x$,

$$
\begin{gathered}
\underbrace{\lambda_{\min }(P)}_{=: c_{1}}\|x\|_{2}^{2} \leq V(x) \leq \underbrace{\lambda_{\max }(P)}_{=: c_{2}}\|x\|_{2}^{2} \\
\mathcal{L}_{A x} V=\frac{\partial V}{\partial x} A x=-x^{T} Q x \leq-\underbrace{\lambda_{\min }(Q)}_{=: c_{3}}\|x\|_{2}^{2} \\
\left\|\frac{\partial V}{\partial x}\right\|_{2}=\left\|2 x^{T} P\right\| \leq 2\|P\|_{2}\|x\|_{2}=\underbrace{2 \lambda_{\max }(P)}_{=: c_{4}}\|x\|_{2}
\end{gathered}
$$

$$
V(x)=x^{T} P x, \quad \frac{\partial V}{\partial x} A x=-x^{T} x
$$

$$
c_{3}=1, c_{4}=2\|P\|=2 \lambda_{\max }(P)=2 \times 1.513=3.026
$$

$$
\|g(x)\|=\beta\left|x_{2}\right|^{3} \leq \beta k_{2}^{2}\left|x_{2}\right| \leq \beta k_{2}^{2}\|x\|, \forall\left|x_{2}\right| \leq k_{2}
$$

$g(x)$ satisfies the bound $\|g(x)\| \leq \gamma\|x\|$ over compact sets of x. Consider the compact set

$$
\begin{gathered}
\Omega_{c}=\{V(x) \leq c\}=\left\{x^{T} P x \leq c\right\}, \quad c>0 \\
k_{2}=\max _{x^{T} P x \leq c}\left|x_{2}\right|=\max _{x^{T} P x \leq c}\left|\left[\begin{array}{ll}
0 & 1
\end{array}\right] x\right|
\end{gathered}
$$

Fact:

$$
\max _{x^{T} P x \leq c}\|L x\|=\sqrt{c}\left\|L P^{-1 / 2}\right\|
$$

Proof

$$
\begin{gathered}
x^{T} P x \leq c \Leftrightarrow \frac{1}{c} x^{T} P x \leq 1 \Leftrightarrow \frac{1}{c} x^{T} P^{1 / 2} P^{1 / 2} x \leq 1 \\
y=\frac{1}{\sqrt{c}} P^{1 / 2} x \\
\max _{x^{T} P x \leq c}\|L x\|=\max _{y^{T} y \leq 1}\left\|L \sqrt{c} P^{-1 / 2} y\right\|=\sqrt{c}\left\|L P^{-1 / 2}\right\|
\end{gathered}
$$

$$
\begin{gathered}
k_{2}=\max _{x^{T} P x \leq c}\left|\left[\begin{array}{ll}
0 & 1
\end{array}\right] x\right|=\sqrt{c}\left\|\left[\begin{array}{ll}
0 & 1
\end{array}\right] P^{-1 / 2}\right\|=1.8194 \sqrt{c} \\
\|g(x)\| \leq \beta c(1.8194)^{2}\|x\|, \quad \forall x \in \Omega_{c} \\
\|g(x)\| \leq \gamma\|x\|, \quad \forall x \in \Omega_{c}, \quad \gamma=\beta c(1.8194)^{2} \\
\gamma<\frac{c_{3}}{c_{4}} \Leftrightarrow \beta<\frac{1}{3.026 \times(1.8194)^{2} c} \approx \frac{0.1}{c} \\
\beta<0.1 / c \Rightarrow \dot{V}(x) \leq-(1-10 \beta c)\|x\|^{2}
\end{gathered}
$$

Hence, the origin is exponentially stable and Ω_{c} is an estimate of the region of attraction

Alternative Bound on $\boldsymbol{\beta}$

$$
\begin{aligned}
\dot{V}(x) & =-\|x\|^{2}+2 x^{T} P g(x) \\
& =-\|x\|^{2}+\frac{1}{8} \beta x_{2}^{3}\left(\left[\begin{array}{l}
5 \\
5
\end{array} x\right)\right. \\
& \leq-\|x\|^{2}+\frac{\sqrt{29}}{8} \beta x_{2}^{2}\|x\|^{2}
\end{aligned}
$$

Over $\Omega_{c}, x_{2}^{2} \leq(1.8194)^{2} c$

$$
\begin{aligned}
\dot{V}(x) & \leq-\left(1-\frac{\sqrt{29}}{8} \beta(1.8194)^{2} c\right)\|x\|^{2} \\
& =-\left(1-\frac{\beta c}{0.448}\right)\|x\|^{2}
\end{aligned}
$$

If $\beta<0.448 / c$, the origin will be exponentially stable and Ω_{c} will be an estimate of the region of attraction

Remark: The inequality $\beta<0.448 / c$ shows a tradeoff between the estimate of the region of attraction and the estimate of the upper bound on β The smaller the upper bound on $\boldsymbol{\beta}$, the larger the estimate of RA

Case 2: The origin of the nominal system is asymptotically stable
$\dot{V}(t, x)=\frac{\partial V}{\partial x} f(x)+\frac{\partial V}{\partial x} g(t, x) \leq-W_{3}(x)+\left\|\frac{\partial V}{\partial x} g(t, x)\right\|$
Under what condition will the following inequality hold?

$$
\left\|\frac{\partial V}{\partial x} g(t, x)\right\|<W_{3}(x)
$$

Special Case: Quadratic-Type Lyapunov function

$$
\frac{\partial V}{\partial x} f(x) \leq-c_{3} \phi^{2}(x), \quad\left\|\frac{\partial V}{\partial x}\right\| \leq c_{4} \phi(x)
$$

$\phi(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is positive definite and continuous

$$
\begin{aligned}
& \dot{V}(t, x) \leq-c_{3} \phi^{2}(x)+c_{4} \phi(x)\|g(t, x)\| \\
& \text { If }\|g(t, x)\| \leq \gamma \phi(x), \quad \text { with } \gamma<\frac{c_{3}}{c_{4}} \\
& \dot{V}(t, x) \leq-\left(c_{3}-c_{4} \gamma\right) \phi^{2}(x)
\end{aligned}
$$

Example

$$
\dot{x}=-x^{3}+g(t, x)
$$

$V(x)=x^{4}$ is a quadratic-type Lyapunov function for the nominal system $\dot{x}=-x^{3}$

$$
\begin{gathered}
\frac{\partial V}{\partial x}\left(-x^{3}\right)=-4 x^{6}, \quad\left|\frac{\partial V}{\partial x}\right|=4|x|^{3} \\
\phi(x)=|x|^{3}, \quad c_{3}=4, \quad c_{4}=4
\end{gathered}
$$

Suppose $|g(t, x)| \leq \gamma|x|^{3}, \quad \forall x, \quad$ with $\gamma<1$

$$
\dot{V}(t, x) \leq-4(1-\gamma) \phi^{2}(x)
$$

Hence, the origin is a globally uniformly asymptotically stable

Remark: A nominal system with asymptotically, but not exponentially, stable origin is not robust to smooth perturbations with arbitrarily small linear growth bounds

Example

$$
\dot{x}=-x^{3}+\gamma x
$$

The origin is unstable for any $\gamma>0$ (can be easily seen via linearization)

