
Nonlinear Systems and Control
Lecture # 12

Converse Lyapunov Functions
&

Time Varying Systems

– p.1/20



Converse Lyapunov Theorem–Exponential Stability

Let x = 0 be an exponentially stable equilibrium point for
the system ẋ = f(x), where f is continuously differentiable
on D = {‖x‖ < r}. Let k, λ, and r0 be positive constants
with r0 < r/k such that

‖x(t)‖ ≤ k‖x(0)‖e−λt, ∀ x(0) ∈ D0, ∀ t ≥ 0

where D0 = {‖x‖ < r0}. Then, there is a continuously

differentiable function V (x) that satisfies the inequalities
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c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∂V

∂x
f(x) ≤ −c3‖x‖2

∥

∥

∥

∥

∂V

∂x

∥

∥

∥

∥

≤ c4‖x‖

for all x ∈ D0, with positive constants c1, c2, c3, and c4
Moreover, if f is continuously differentiable for all x, globally
Lipschitz, and the origin is globally exponentially stable,
then V (x) is defined and satisfies the aforementioned
inequalities for all x ∈ Rn
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Idea of the proof: Let ψ(t;x) be the solution of

ẏ = f(y), y(0) = x

Take

V (x) =

∫ δ

0
ψT (t;x) ψ(t;x) dt, δ > 0
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Application: Consider the system ẋ = f(x) where f is
continuously differentiable in the neighborhood of the origin
and f(0) = 0. Show that the origin is exponentially stable
only if A = [∂f/∂x](0) is Hurwitz

f(x) = Ax+G(x)x, G(x) → 0 as x → 0

Given any L > 0, there is r1 > 0 such that

‖G(x)‖ ≤ L, ∀ ‖x‖ < r1

Because the origin of ẋ = f(x) is exponentially stable, let
V (x) be the function provided by the converse Lyapunov
theorem over the domain {‖x‖ < r0}. Use V (x) as a
Lyapunov function candidate for ẋ = Ax
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∂V

∂x
Ax =

∂V

∂x
f(x) −

∂V

∂x
G(x)x

≤ −c3‖x‖2 + c4L‖x‖2

= −(c3 − c4L)‖x‖2

Take L < c3/c4, γ
def
= (c3 − c4L) > 0 ⇒

∂V

∂x
Ax ≤ −γ‖x‖2, ∀ ‖x‖ < min{r0, r1}

The origin of ẋ = Ax is exponentially stable
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Time-varying Systems

ẋ = f(t, x)

f(t, x) is piecewise continuous in t and locally Lipschitz in
x for all t ≥ 0 and all x ∈ D. The origin is an equilibrium
point at t = 0 if

f(t, 0) = 0, ∀ t ≥ 0

While the solution of the autonomous system

ẋ = f(x), x(t0) = x0

depends only on (t− t0), the solution of

ẋ = f(t, x), x(t0) = x0

may depend on both t and t0
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Comparison Functions

A scalar continuous function α(r), defined for r ∈ [0, a)
is said to belong to class K if it is strictly increasing and
α(0) = 0. It is said to belong to class K∞ if it defined
for all r ≥ 0 and α(r) → ∞ as r → ∞

A scalar continuous function β(r, s), defined for
r ∈ [0, a) and s ∈ [0,∞) is said to belong to class KL
if, for each fixed s, the mapping β(r, s) belongs to class
K with respect to r and, for each fixed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s) → 0
as s → ∞
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Example

α(r) = tan−1(r) is strictly increasing since
α′(r) = 1/(1 + r2) > 0. It belongs to class K, but not
to class K∞ since limr→∞ α(r) = π/2 < ∞

α(r) = rc, for any positive real number c, is strictly
increasing since α′(r) = crc−1 > 0. Moreover,
limr→∞ α(r) = ∞; thus, it belongs to class K∞

α(r) = min{r, r2} is continuous, strictly increasing,
and limr→∞ α(r) = ∞. Hence, it belongs to class K∞
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β(r, s) = r/(ksr + 1), for any positive real number k,
is strictly increasing in r since

∂β

∂r
=

1

(ksr + 1)2
> 0

and strictly decreasing in s since

∂β

∂s
=

−kr2

(ksr + 1)2
< 0

Moreover, β(r, s) → 0 as s → ∞. Therefore, it belongs
to class KL

β(r, s) = rce−s, for any positive real number c, belongs
to class KL
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Properties:

α belongs to class K (or K∞) ⇒ α−1 belongs to class
K (or K∞)

α1, α2 belong to K (or K∞) ⇒ α1 ◦ α2 belongs to
class K (or K∞)

W be a continuous positive definite function on D that
contains the origin. Let Br ⊂ D, then there exist class
K functions α1, α2 on [0, r], such that

α1(‖x‖) ≤ W (x) ≤ α2(‖x‖)

for all x ∈ Br. If W (x) is radially unbounded, then α1

and α2 can be chosen to belong to class K∞
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Definition: The equilibrium point x = 0 of ẋ = f(t, x) is

uniformly stable if there exist a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀ t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c

uniformly asymptotically stable if there exist a class KL
function β and a positive constant c, independent of t0,
such that

‖x(t)‖ ≤ β(‖x(t0)‖, t−t0), ∀ t ≥ t0 ≥ 0, ∀ ‖x(t0)‖ < c

globally uniformly asymptotically stable if the foregoing
inequality is satisfied for any initial state x(t0)
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exponentially stable if there exist positive constants c,
k, and λ such that

‖x(t)‖ ≤ k‖x(t0)‖e
−λ(t−t0), ∀ ‖x(t0)‖ < c

globally exponentially stable if the foregoing inequality
is satisfied for any initial state x(t0)
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Theorem: Let the origin x = 0 be an equilibrium point for
ẋ = f(t, x) and D ⊂ Rn be a domain containing x = 0.
Suppose f(t, x) is piecewise continuous in t and locally
Lipschitz in x for all t ≥ 0 and x ∈ D. Let V (t, x) be a
continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (1)

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0 (2)

for all t ≥ 0 and x ∈ D, where W1(x) and W2(x) are
continuous positive definite functions on D. Then, the origin
is uniformly stable

– p.14/20



Proof: Choose Br ⊂ D and c < min‖x‖=rW1(x).
Take Ωt,c = {x ∈ Br|V (t, x) ≤ c}.
V̇ in Ωt,c ⇒ Ωt,c is positively invariant. Ωt,c depends on t.
Sandwich Ωt,c between two sets, which are indep. of t.
{x ∈ Br|W2(x) ≤ c}

W2(x) ≤ c ⇒ V (t, x) ≤ c ⇒ {W2(x) ≤ c} ⊂ {V (t, x) ≤ c}

{x ∈ Br|W1(x) ≤ c}

V (t, x) ≤ c ⇒ W1(x) ≤ c ⇒ {V (t, x) ≤ c} ⊂ {W1(x) ≤ c}

Hence, the solution is bounded and defined for all t ≥ t0.
Moreover, for all t ≥ t0,

V (t, x(t)) ≤ V (t0, x(t0))
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∃ class K functions α1 and α2 such that

α1(‖x‖) ≤ W1(x) ≤ V (t, x) ≤ W2(x) ≤ α2(‖x‖)

‖x(t)‖ ≤ α−1
1 (V (t, x(t))) ≤ α−1

1 (V (t0, x(t0)))

≤ α−1
1 (α2(‖x(t0)‖))

α−1
1 ◦ α2 is a class K function, hence the origin is uniformly

stable
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Theorem: Suppose the assumptions of the previous
theorem are satisfied with

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x)

for all t ≥ 0 and x ∈ D, where W3(x) is a continuous
positive definite function on D. Then, the origin is uniformly
asymptotically stable. Moreover, if r and c are chosen such
that Br = {‖x‖ ≤ r} ⊂ D and c < min‖x‖=rW1(x), then
every trajectory starting in {x ∈ Br | W2(x) ≤ c} satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and
W1(x) is radially unbounded, then the origin is globally
uniformly asymptotically stable
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Theorem: Suppose the assumptions of the previous
theorem are satisfied with

k1‖x‖a ≤ V (t, x) ≤ k2‖x‖a

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3‖x‖a

for all t ≥ 0 and x ∈ D, where k1, k2, k3, and a are
positive constants. Then, the origin is exponentially stable.
If the assumptions hold globally, the origin will be globally
exponentially stable.
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Example:

ẋ = −[1 + g(t)]x3, g(t) ≥ 0, ∀ t ≥ 0

V (x) = 1
2x

2

V̇ (t, x) = −[1 + g(t)]x4 ≤ −x4, ∀ x ∈ R, ∀ t ≥ 0

The origin is globally uniformly asymptotically stable

Example:

ẋ1 = −x1 − g(t)x2

ẋ2 = x1 − x2

0 ≤ g(t) ≤ k and ġ(t) ≤ g(t), ∀ t ≥ 0
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V (t, x) = x2
1 + [1 + g(t)]x2

2

x2
1 + x2

2 ≤ V (t, x) ≤ x2
1 + (1 + k)x2

2, ∀ x ∈ R2

V̇ (t, x) = −2x2
1 + 2x1x2 − [2 + 2g(t) − ġ(t)]x2

2

2 + 2g(t) − ġ(t) ≥ 2 + 2g(t) − g(t) ≥ 2

V̇ (t, x) ≤ −2x2
1 + 2x1x2 − 2x2

2 = − xT

[

2 −1

−1 2

]

x

The origin is globally exponentially stable
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