Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems

Converse Lyapunov Theorem-Exponential Stability

Let x=0 be an exponentially stable equilibrium point for the system $\dot{x}=f(x)$, where f is continuously differentiable on $D=\{\|x\|< r\}$. Let k, λ , and r_0 be positive constants with $r_0< r/k$ such that

$$||x(t)|| \le k||x(0)||e^{-\lambda t}, \quad \forall \ x(0) \in D_0, \ \forall \ t \ge 0$$

where $D_0 = \{ \|x\| < r_0 \}$. Then, there is a continuously differentiable function V(x) that satisfies the inequalities

$$egin{align} c_1 \|x\|^2 & \leq V(x) \leq c_2 \|x\|^2 \ & rac{\partial V}{\partial x} f(x) \leq -c_3 \|x\|^2 \ & \left\|rac{\partial V}{\partial x}
ight\| \leq c_4 \|x\| \ & \end{aligned}$$

for all $x \in D_0$, with positive constants c_1 , c_2 , c_3 , and c_4 Moreover, if f is continuously differentiable for all x, globally Lipschitz, and the origin is globally exponentially stable, then V(x) is defined and satisfies the aforementioned inequalities for all $x \in R^n$

Idea of the proof: Let $\psi(t;x)$ be the solution of

$$\dot{y} = f(y), \quad y(0) = x$$

Take

$$V(x) = \int_0^\delta \psi^T(t;x) \; \psi(t;x) \; dt, \quad \delta > 0$$

Application: Consider the system $\dot{x}=f(x)$ where f is continuously differentiable in the neighborhood of the origin and f(0)=0. Show that the origin is exponentially stable only if $A=[\partial f/\partial x](0)$ is Hurwitz

$$f(x) = Ax + G(x)x, \quad G(x) o 0$$
 as $x o 0$

Given any L>0, there is $r_1>0$ such that

$$\|G(x)\| \leq L, \ \ \forall \ \|x\| < r_1$$

Because the origin of $\dot{x}=f(x)$ is exponentially stable, let V(x) be the function provided by the converse Lyapunov theorem over the domain $\{||x|| < r_0\}$. Use V(x) as a Lyapunov function candidate for $\dot{x}=Ax$

$$\frac{\partial V}{\partial x} Ax = \frac{\partial V}{\partial x} f(x) - \frac{\partial V}{\partial x} G(x) x$$

$$\leq -c_3 ||x||^2 + c_4 L ||x||^2$$

$$= -(c_3 - c_4 L) ||x||^2$$

Take
$$L < c_3/c_4, \ \gamma \stackrel{\mathrm{def}}{=} (c_3 - c_4 L) > 0 \Rightarrow$$
 $\frac{\partial V}{\partial x} Ax \le -\gamma \|x\|^2, \ \forall \ \|x\| < \min\{r_0, \ r_1\}$

The origin of $\dot{x} = Ax$ is exponentially stable

Time-varying Systems

$$\dot{x} = f(t,x)$$

f(t,x) is piecewise continuous in t and locally Lipschitz in x for all $t \geq 0$ and all $x \in D$. The origin is an equilibrium point at t=0 if

$$f(t,0) = 0, \ \forall \ t \ge 0$$

While the solution of the autonomous system

$$\dot{x}=f(x),\quad x(t_0)=x_0$$

depends only on $(t-t_0)$, the solution of

$$\dot{x}=f(t,x),\quad x(t_0)=x_0$$

may depend on both t and t_0

Comparison Functions

- A scalar continuous function $\alpha(r)$, defined for $r \in [0, a)$ is said to belong to class $\mathcal K$ if it is strictly increasing and $\alpha(0) = 0$. It is said to belong to class $\mathcal K_{\infty}$ if it defined for all $r \geq 0$ and $\alpha(r) \to \infty$ as $r \to \infty$
- A scalar continuous function $\beta(r,s)$, defined for $r \in [0,a)$ and $s \in [0,\infty)$ is said to belong to class \mathcal{KL} if, for each fixed s, the mapping $\beta(r,s)$ belongs to class \mathcal{K} with respect to r and, for each fixed r, the mapping $\beta(r,s)$ is decreasing with respect to s and $\beta(r,s) \to 0$ as $s \to \infty$

Example

- $\alpha(r) = \tan^{-1}(r)$ is strictly increasing since $\alpha'(r) = 1/(1+r^2) > 0$. It belongs to class \mathcal{K} , but not to class \mathcal{K}_{∞} since $\lim_{r \to \infty} \alpha(r) = \pi/2 < \infty$
- $\alpha(r)=r^c$, for any positive real number c, is strictly increasing since $\alpha'(r)=cr^{c-1}>0$. Moreover, $\lim_{r\to\infty}\alpha(r)=\infty$; thus, it belongs to class \mathcal{K}_{∞}
- $\alpha(r) = \min\{r, r^2\}$ is continuous, strictly increasing, and $\lim_{r\to\infty} \alpha(r) = \infty$. Hence, it belongs to class \mathcal{K}_{∞}

 $m{eta}(r,s)=r/(ksr+1),$ for any positive real number k, is strictly increasing in r since

$$rac{\partial eta}{\partial r} = rac{1}{(ksr+1)^2} > 0$$

and strictly decreasing in s since

$$\frac{\partial \beta}{\partial s} = \frac{-kr^2}{(ksr+1)^2} < 0$$

Moreover, $\beta(r,s) \to 0$ as $s \to \infty$. Therefore, it belongs to class \mathcal{KL}

 $m{\beta}(r,s)=r^ce^{-s},$ for any positive real number c, belongs to class \mathcal{KL}

Properties:

- α belongs to class \mathcal{K} (or \mathcal{K}_{∞}) $\Rightarrow \alpha^{-1}$ belongs to class \mathcal{K} (or \mathcal{K}_{∞})
- α_1, α_2 belong to \mathcal{K} (or \mathcal{K}_{∞}) $\Rightarrow \alpha_1 \circ \alpha_2$ belongs to class \mathcal{K} (or \mathcal{K}_{∞})
- W be a continuous positive definite function on D that contains the origin. Let $Br \subset D$, then there exist class \mathcal{K} functions α_1, α_2 on [0, r], such that

$$\alpha_1(\|x\|) \leq W(x) \leq \alpha_2(\|x\|)$$

for all $x \in B_r$. If W(x) is radially unbounded, then α_1 and α_2 can be chosen to belong to class \mathcal{K}_{∞}

Definition: The equilibrium point x=0 of $\dot{x}=f(t,x)$ is

• uniformly stable if there exist a class K function α and a positive constant c, independent of t_0 , such that

$$||x(t)|| \le \alpha(||x(t_0)||), \ \forall \ t \ge t_0 \ge 0, \ \forall \ ||x(t_0)|| < c$$

• uniformly asymptotically stable if there exist a class \mathcal{KL} function β and a positive constant c, independent of t_0 , such that

$$||x(t)|| \le \beta(||x(t_0)||, t-t_0), \ \forall \ t \ge t_0 \ge 0, \ \forall \ ||x(t_0)|| < c$$

• globally uniformly asymptotically stable if the foregoing inequality is satisfied for any initial state $x(t_0)$

m p exponentially stable if there exist positive constants c, k, and λ such that

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}, \ \forall \ ||x(t_0)|| < c$$

ullet globally exponentially stable if the foregoing inequality is satisfied for any initial state $x(t_0)$

Theorem: Let the origin x=0 be an equilibrium point for $\dot{x}=f(t,x)$ and $D\subset R^n$ be a domain containing x=0. Suppose f(t,x) is piecewise continuous in t and locally Lipschitz in x for all $t\geq 0$ and $x\in D$. Let V(t,x) be a continuously differentiable function such that

$$W_1(x) \le V(t, x) \le W_2(x) \tag{1}$$

$$\dot{V}(t,x) = rac{\partial V}{\partial t} + rac{\partial V}{\partial x} f(t,x) \leq 0$$
 (2)

for all $t \geq 0$ and $x \in D$, where $W_1(x)$ and $W_2(x)$ are continuous positive definite functions on D. Then, the origin is uniformly stable

Proof: Choose $B_r \subset D$ and $c < \min_{\|x\|=r} W_1(x)$.

Take $\Omega_{t,c} = \{x \in B_r | V(t,x) \leq c\}.$

 \dot{V} in $\Omega_{t,c} \Rightarrow \Omega_{t,c}$ is positively invariant. $\Omega_{t,c}$ depends on t.

Sandwich $\Omega_{t,c}$ between two sets, which are indep. of t.

$$\{x \in B_r | W_2(x) \le c\}$$

$$W_2(x) \le c \Rightarrow V(t,x) \le c \Rightarrow \{W_2(x) \le c\} \subset \{V(t,x) \le c\}$$

$$\{x \in B_r | W_1(x) \le c\}$$

$$V(t,x) \le c \Rightarrow W_1(x) \le c \Rightarrow \{V(t,x) \le c\} \subset \{W_1(x) \le c\}$$

Hence, the solution is bounded and defined for all $t \geq t_0$. Moreover, for all $t \geq t_0$,

$$V(t, x(t)) \leq V(t_0, x(t_0))$$

 \exists class \mathcal{K} functions α_1 and α_2 such that

$$\alpha_1(||x||) \le W_1(x) \le V(t,x) \le W_2(x) \le \alpha_2(||x||)$$

$$||x(t)|| \le \alpha_1^{-1}(V(t, x(t))) \le \alpha_1^{-1}(V(t_0, x(t_0)))$$

 $\le \alpha_1^{-1}(\alpha_2(||x(t_0)||))$

 $\alpha_1^{-1}\circ\alpha_2$ is a class ${\cal K}$ function, hence the origin is uniformly stable

Theorem: Suppose the assumptions of the previous theorem are satisfied with

$$rac{\partial V}{\partial t} + rac{\partial V}{\partial x} f(t,x) \leq -W_3(x)$$

for all $t \geq 0$ and $x \in D$, where $W_3(x)$ is a continuous positive definite function on D. Then, the origin is uniformly asymptotically stable. Moreover, if r and c are chosen such that $B_r = \{\|x\| \leq r\} \subset D$ and $c < \min_{\|x\| = r} W_1(x)$, then every trajectory starting in $\{x \in B_r \mid W_2(x) \leq c\}$ satisfies

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \ \forall \ t \ge t_0 \ge 0$$

for some class \mathcal{KL} function β . Finally, if $D=R^n$ and $W_1(x)$ is radially unbounded, then the origin is globally uniformly asymptotically stable

Theorem: Suppose the assumptions of the previous theorem are satisfied with

$$|k_1||x||^a \le V(t,x) \le k_2||x||^a$$

$$rac{\partial V}{\partial t} + rac{\partial V}{\partial x} f(t,x) \leq -k_3 \|x\|^a$$

for all $t \geq 0$ and $x \in D$, where k_1, k_2, k_3 , and a are positive constants. Then, the origin is exponentially stable. If the assumptions hold globally, the origin will be globally exponentially stable.

Example:

$$\dot{x}=-[1+g(t)]x^3,\quad g(t)\geq 0,\;\;orall\;t\geq 0$$
 $V(x)=rac{1}{2}x^2$

$$\dot{V}(t,x) = -[1+g(t)]x^4 \le -x^4, \quad \forall \ x \in R, \ orall \ t \ge 0$$

The origin is globally uniformly asymptotically stable

Example:

$$egin{array}{lll} \dot{x}_1&=&-x_1-g(t)x_2\ \dot{x}_2&=&x_1-x_2\ \ 0\leq g(t)\leq k \ ext{and} \ \dot{g}(t)\leq g(t), \ orall\, t\geq 0 \end{array}$$

$$egin{aligned} V(t,x) &= x_1^2 + [1+g(t)]x_2^2 \ x_1^2 + x_2^2 \leq V(t,x) \leq x_1^2 + (1+k)x_2^2, \;\; orall \; x \in R^2 \ \dot{V}(t,x) &= -2x_1^2 + 2x_1x_2 - [2+2g(t)-\dot{g}(t)]x_2^2 \ 2 + 2g(t) - \dot{g}(t) \geq 2 + 2g(t) - g(t) \geq 2 \ \dot{V}(t,x) \leq -2x_1^2 + 2x_1x_2 - 2x_2^2 = -x^T \left[egin{array}{c} 2 & -1 \ -1 & 2 \end{array}
ight] x \end{aligned}$$

The origin is globally exponentially stable