Nonlinear Systems and Control Lecture # 11 Exponential Stability & Region of Attraction

Exponential Stability:

The origin of $\dot{x} = f(x)$ is exponentially stable if and only if the linearization of f(x) at the origin is Hurwitz

Theorem: Let f(x) be a locally Lipschitz function defined over a domain $D \subset \mathbb{R}^n$; $0 \in D$. Let V(x) be a continuously differentiable function such that

$$|k_1||x||^a \le V(x) \le k_2||x||^a$$

$$|\dot{V}(x) \leq -k_3 ||x||^a$$

for all $x \in D$, where k_1 , k_2 , k_3 , and a are positive constants. Then, the origin is an exponentially stable equilibrium point of $\dot{x} = f(x)$. If the assumptions hold globally, the origin will be globally exponentially stable

Proof: Choose c>0 small enough that

$$\{k_1 || x ||^a \le c\} \subset D$$

$$V(x) \le c \implies k_1 ||x||^a \le c$$

$$\Omega_c = \{V(x) \le c\} \subset \{ k_1 ||x||^a \le c\} \subset D$$

 Ω_c is compact and positively invariant; $\forall \ x(0) \in \Omega_c$

$$\dot{V} \le -k_3 ||x||^a \le -\frac{k_3}{k_2} V$$

$$\frac{dV}{V} \le -\frac{k_3}{k_2} dt$$

$$V(x(t)) \le V(x(0))e^{-(k_3/k_2)t}$$

$$\|x(t)\| \le \left[\frac{V(x(t))}{k_1}\right]^{1/a}$$
 $\le \left[\frac{V(x(0))e^{-(k_3/k_2)t}}{k_1}\right]^{1/a}$
 $\le \left[\frac{k_2\|x(0)\|^a e^{-(k_3/k_2)t}}{k_1}\right]^{1/a}$
 $= \left(\frac{k_2}{k_1}\right)^{1/a} e^{-\gamma t} \|x(0)\|, \quad \gamma = k_3/(k_2a)$

Example

$$egin{array}{ll} \dot{x}_1 &= x_2 \ \dot{x}_2 &= -h(x_1) - x_2 \ \end{array} \ c_1 y^2 \leq y h(y) \leq c_2 y^2, \quad orall \ y, \ c_1 > 0, \ c_2 > 0 \ V(x) = rac{1}{2} \, x^T \left[egin{array}{c} 1 & 1 \ 1 & 2 \end{array}
ight] x + 2 \int_0^{x_1} h(y) \ dy \ \end{array} \ c_1 x_1^2 \leq 2 \int_0^{x_1} h(y) \ dy \leq c_2 x_1^2 \end{array}$$

$$\dot{V} = [x_1 + x_2 + 2h(x_1)]x_2 + [x_1 + 2x_2][-h(x_1) - x_2]$$

= $-x_1h(x_1) - x_2^2 \le -c_1x_1^2 - x_2^2$

The origin is globally exponentially stable

Region of Attraction

Lemma: If x=0 is an asymptotically stable equilibrium point for $\dot{x}=f(x)$, then its region of attraction R_A is an open, connected, invariant set. Moreover, the boundary of R_A is formed by trajectories

Example

$$\dot{x}_1 = -x_2$$
 $\dot{x}_2 = x_1 + (x_1^2 - 1)x_2$

Example

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -x_1 + \frac{1}{3}x_1^3 - x_2$

Estimates of the Region of Attraction: Find a subset of the region of attraction

Warning: Let D be a domain with $0 \in D$ such that for all $x \in D$, V(x) is positive definite and $\dot{V}(x)$ is negative definite

Is *D* a subset of the region of attraction?

NO

Why?

Example: Reconsider

$$egin{array}{lll} \dot{x}_1 &=& x_2 \ \dot{x}_2 &=& -x_1 + rac{1}{3} x_1^3 - x_2 \end{array} \ V(x) &=& rac{1}{2} x^T \left[egin{array}{c} 1 & 1 \ 1 & 2 \end{array}
ight] x + 2 \int_0^{x_1} (y - rac{1}{3} y^3) \ dy \ &=& rac{3}{2} x_1^2 - rac{1}{6} x_1^4 + x_1 x_2 + x_2^2 \ \dot{V}(x) &=& -x_1^2 (1 - rac{1}{3} x_1^2) - x_2^2 \ D &=& \{ -\sqrt{3} < x_1 < \sqrt{3} \} \end{array}$$

Is D a subset of the region of attraction?

The simplest estimate is the bounded component of $\{V(x) < c\}$, where $c = \min_{x \in \partial D} V(x)$

For $V(x)=x^TPx$, where $P=P^T>0$, the minimum of V(x) over ∂D is given by

For
$$D = \{\|x\| < r\}, \quad \min_{\|x\| = r} x^T P x = \lambda_{\min}(P) r^2$$

For
$$D = \{|b^Tx| < r\}, \quad \min_{|b^Tx| = r} x^T P x = \frac{r^2}{b^T P^{-1} b}$$

For
$$D=\{|b_i^Tx| < r_i, \ i=1,\ldots,p\},$$

Take
$$c = \min_{1 \leq i \leq p} \ rac{r_i^2}{b_i^T P^{-1} b_i} \leq \min_{x \in \partial D} x^T P x$$

Example (Revisited)

$$\dot{x}_1 = -x_2$$
 $\dot{x}_2 = x_1 + (x_1^2 - 1)x_2$ $V(x) = 1.5x_1^2 - x_1x_2 + x_2^2$ $\dot{V}(x) = -(x_1^2 + x_2^2) - (x_1^3x_2 - 2x_1^2x_2^2)$ $\dot{V}(x) < 0 \ ext{for} \ 0 < \|x\|^2 < rac{2}{\sqrt{5}} \stackrel{ ext{def}}{=} r^2$ Take $c = \lambda_{\min}(P)r^2 = 0.691 imes rac{2}{\sqrt{5}} = 0.618$

 $\{V(x) < c\}$ is an estimate of the region of attraction

$$x_1 = \rho \cos \theta, \ \ x_2 = \rho \sin \theta$$

$$\dot{V} = -\rho^2 + \rho^4 \cos^2 \theta \sin \theta (2 \sin \theta - \cos \theta)
\leq -\rho^2 + \rho^4 |\cos^2 \theta \sin \theta| \cdot |2 \sin \theta - \cos \theta|
\leq -\rho^2 + \rho^4 \times 0.3849 \times 2.2361
\leq -\rho^2 + 0.861 \rho^4 < 0, \text{ for } \rho^2 < \frac{1}{0.861}$$

Take
$$c = \lambda_{\min}(P)r^2 = \frac{0.691}{0.861} = 0.803$$

Alternatively, choose c as the largest constant such that $\{x^TPx < c\}$ is a subset of $\{\dot{V}(x) < 0\}$

(a) Contours of $\dot{V}(x)=0$ (dashed)

V(x)=0.8 (dash-dot), V(x)=2.25 (solid)

(b) comparison of the region of attraction with its estimate

If D is a domain where V(x) is positive definite and $\dot{V}(x)$ is negative definite (or $\dot{V}(x)$ is negative semidefinite and no solution can stay identically in the set $\dot{V}(x)=0$ other than x=0), then according to LaSalle's theorem any compact positively invariant subset of D is a subset of the region of attraction

Example

$$egin{array}{lll} \dot{x}_1 &=& x_2 \ \dot{x}_2 &=& -4(x_1+x_2)-h(x_1+x_2) \ h(0) &=& 0; & uh(u) > 0, \; orall \; |u| < 1 \end{array}$$

$$V(x) = x^T P x = x^T \left[egin{array}{cc} 2 & 1 \ 1 & 1 \end{array}
ight] x = 2 x_1^2 + 2 x_1 x_2 + x_2^2$$

$$egin{array}{lcl} \dot{V}(x) &=& (4x_1+2x_2)\dot{x}_1+2(x_1+x_2)\dot{x}_2 \ &=& -2x_1^2-6(x_1+x_2)^2-2(x_1+x_2)h(x_1+x_2) \ &\leq& -2x_1^2-6(x_1+x_2)^2, \ orall |x_1+x_2| \leq 1 \ &=& -x^T \left[egin{array}{c} 8 & 6 \ 6 & 6 \end{array}
ight] x \end{array}$$

 $\dot{V}(x)$ is negative definite in $\{|x_1+x_2|\leq 1\}$

$$b^T = [1 \ 1], \quad c = \min_{|x_1 + x_2| = 1} x^T P x = \frac{1}{b^T P^{-1} b} = 1$$

$$\sigma = x_1 + x_2$$

$$\frac{d}{dt}\sigma^2 = 2\sigma x_2 - 8\sigma^2 - 2\sigma h(\sigma) \le 2\sigma x_2 - 8\sigma^2, \ \ \forall \ |\sigma| \le 1$$

On
$$\sigma=1$$
, $\dfrac{d}{dt}\sigma^2\leq 2x_2-8\leq 0, \ \ \forall \ x_2\leq 4$

On
$$\sigma=-1$$
, $\dfrac{d}{dt}\sigma^2\leq -2x_2-8\leq 0, \ \ \forall \ x_2\geq -4$

$$c_1 = V(x)|_{x_1 = -3, x_2 = 4} = 10, \quad c_2 = V(x)|_{x_1 = 3, x_2 = -4} = 10$$

$$\Gamma = \{V(x) \le 10 \text{ and } |x_1 + x_2| \le 1\}$$

is a subset of the region of attraction

