Nonlinear Systems and Control Lecture \# 11 Exponential Stability \& Region of Attraction

Exponential Stability:

The origin of $\dot{x}=f(x)$ is exponentially stable if and only if the linearization of $f(x)$ at the origin is Hurwitz

Theorem: Let $f(x)$ be a locally Lipschitz function defined over a domain $D \subset R^{n} ; 0 \in D$. Let $V(x)$ be a continuously differentiable function such that

$$
\begin{gathered}
k_{1}\|x\|^{a} \leq V(x) \leq k_{2}\|x\|^{a} \\
\dot{V}(x) \leq-k_{3}\|x\|^{a}
\end{gathered}
$$

for all $x \in D$, where k_{1}, k_{2}, k_{3}, and a are positive constants. Then, the origin is an exponentially stable equilibrium point of $\dot{x}=f(x)$. If the assumptions hold globally, the origin will be globally exponentially stable

Proof: Choose $c>0$ small enough that

$$
\begin{gathered}
\left\{k_{1}\|x\|^{a} \leq c\right\} \subset D \\
V(x) \leq c \Rightarrow k_{1}\|x\|^{a} \leq c \\
\Omega_{c}=\{V(x) \leq c\} \subset\left\{k_{1}\|x\|^{a} \leq c\right\} \subset D
\end{gathered}
$$

Ω_{c} is compact and positively invariant; $\forall x(0) \in \Omega_{c}$

$$
\begin{gathered}
\dot{V} \leq-k_{3}\|x\|^{a} \leq-\frac{k_{3}}{k_{2}} V \\
\frac{d V}{V} \leq-\frac{k_{3}}{k_{2}} d t \\
V(x(t)) \leq V(x(0)) e^{-\left(k_{3} / k_{2}\right) t}
\end{gathered}
$$

$$
\begin{aligned}
\|x(t)\| & \leq\left[\frac{V(x(t))}{k_{1}}\right]^{1 / a} \\
& \leq\left[\frac{V(x(0)) e^{-\left(k_{3} / k_{2}\right) t}}{k_{1}}\right]^{1 / a} \\
& \leq\left[\frac{k_{2}\|x(0)\|^{a} e^{-\left(k_{3} / k_{2}\right) t}}{k_{1}}\right]^{1 / a} \\
& =\left(\frac{k_{2}}{k_{1}}\right)^{1 / a} e^{-\gamma t}\|x(0)\|, \quad \gamma=k_{3} /\left(k_{2} a\right)
\end{aligned}
$$

Example

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-h\left(x_{1}\right)-x_{2} \\
c_{1} y^{2} \leq y h(y) \leq c_{2} y^{2}, \quad \forall y, c_{1}>0, c_{2}>0 \\
V(x)=\frac{1}{2} x^{T}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] x+2 \int_{0}^{x_{1}} h(y) d y \\
c_{1} x_{1}^{2} \leq 2 \int_{0}^{x_{1}} h(y) d y \leq c_{2} x_{1}^{2} \\
\dot{V}=\left[x_{1}+x_{2}+2 h\left(x_{1}\right)\right] x_{2}+\left[x_{1}+2 x_{2}\right]\left[-h\left(x_{1}\right)-x_{2}\right] \\
=-x_{1} h\left(x_{1}\right)-x_{2}^{2} \leq-c_{1} x_{1}^{2}-x_{2}^{2}
\end{gathered}
$$

The origin is globally exponentially stable

Region of Attraction
Lemma: If $x=0$ is an asymptotically stable equilibrium point for $\dot{x}=f(x)$, then its region of attraction R_{A} is an open, connected, invariant set. Moreover, the boundary of $\boldsymbol{R}_{\boldsymbol{A}}$ is formed by trajectories

Example

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2} \\
& \dot{x}_{2}=x_{1}+\left(x_{1}^{2}-1\right) x_{2}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+\frac{1}{3} x_{1}^{3}-x_{2}
\end{aligned}
$$

Estimates of the Region of Attraction: Find a subset of the region of attraction

Warning: Let D be a domain with $0 \in D$ such that for all $x \in D, V(x)$ is positive definite and $\dot{V}(x)$ is negative definite

Is D a subset of the region of attraction?

NO

Why?

Example: Reconsider

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}+\frac{1}{3} x_{1}^{3}-x_{2} \\
V(x)=\frac{1}{2} x^{T}\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] x+2 \int_{0}^{x_{1}}\left(y-\frac{1}{3} y^{3}\right) d y \\
=\frac{3}{2} x_{1}^{2}-\frac{1}{6} x_{1}^{4}+x_{1} x_{2}+x_{2}^{2} \\
\dot{V}(x)=-x_{1}^{2}\left(1-\frac{1}{3} x_{1}^{2}\right)-x_{2}^{2} \\
D=\left\{-\sqrt{3}<x_{1}<\sqrt{3}\right\}
\end{gathered}
$$

Is D a subset of the region of attraction?

The simplest estimate is the bounded component of $\{V(x)<c\}$, where $c=\min _{x \in \partial D} V(x)$

For $V(x)=x^{T} P x$, where $P=P^{T}>0$, the minimum of $V(x)$ over ∂D is given by

$$
\begin{aligned}
& \text { For } D=\{\|x\|<r\}, \quad \min _{\|x\|=r} x^{T} P x=\lambda_{\min }(P) r^{2} \\
& \text { For } D=\left\{\left|b^{T} x\right|<r\right\}, \quad \min _{\left|b^{T} x\right|=r} x^{T} P x=\frac{r^{2}}{b^{T} P^{-1} b}
\end{aligned}
$$

$$
\text { For } D=\left\{\left|b_{i}^{T} x\right|<r_{i}, i=1, \ldots, p\right\}
$$

$$
\text { Take } c=\min _{1 \leq i \leq p} \frac{r_{i}^{2}}{b_{i}^{T} P^{-1} b_{i}} \leq \min _{x \in \partial D} x^{T} P x
$$

Example (Revisited)

$$
\begin{gathered}
\dot{x}_{1}=-x_{2} \\
\dot{x}_{2}=x_{1}+\left(x_{1}^{2}-1\right) x_{2} \\
V(x)=1.5 x_{1}^{2}-x_{1} x_{2}+x_{2}^{2} \\
\dot{V}(x)=-\left(x_{1}^{2}+x_{2}^{2}\right)-\left(x_{1}^{3} x_{2}-2 x_{1}^{2} x_{2}^{2}\right) \\
\dot{V}(x)<0 \text { for } 0<\|x\|^{2}<\frac{2}{\sqrt{5}} \stackrel{\text { def }}{=} r^{2}
\end{gathered}
$$

Take $c=\lambda_{\min }(P) r^{2}=0.691 \times \frac{2}{\sqrt{5}}=0.618$
$\{V(x)<c\}$ is an estimate of the region of attraction

$$
\begin{gathered}
x_{1}=\rho \cos \theta, \quad x_{2}=\rho \sin \theta \\
\dot{V}=-\rho^{2}+\rho^{4} \cos ^{2} \theta \sin \theta(2 \sin \theta-\cos \theta) \\
\leq-\rho^{2}+\rho^{4}\left|\cos ^{2} \theta \sin \theta\right| \cdot|2 \sin \theta-\cos \theta| \\
\leq-\rho^{2}+\rho^{4} \times 0.3849 \times 2.2361 \\
\leq-\rho^{2}+0.861 \rho^{4}<0, \text { for } \rho^{2}<\frac{1}{0.861} \\
\text { Take } c=\lambda_{\text {min }}(P) r^{2}=\frac{0.691}{0.861}=0.803
\end{gathered}
$$

Alternatively, choose c as the largest constant such that $\left\{x^{T} P x<c\right\}$ is a subset of $\{\dot{V}(x)<0\}$

(a) Contours of $\dot{V}(x)=0$ (dashed)
$V(x)=0.8$ (dash-dot), $V(x)=2.25$ (solid)
(b) comparison of the region of attraction with its estimate

If D is a domain where $V(x)$ is positive definite and $\dot{V}(x)$ is negative definite (or $\dot{V}(x)$ is negative semidefinite and no solution can stay identically in the set $\dot{V}(x)=0$ other than $x=0$), then according to LaSalle's theorem any compact positively invariant subset of D is a subset of the region of attraction

Example

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-4\left(x_{1}+x_{2}\right)-h\left(x_{1}+x_{2}\right) \\
h(0) & =0 ; \quad u h(u) \geq 0, \forall|u| \leq 1
\end{aligned}
$$

$$
\begin{aligned}
V(x) & =x^{T} P x=x^{T}\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] x=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2} \\
\dot{V}(x) & =\left(4 x_{1}+2 x_{2}\right) \dot{x}_{1}+2\left(x_{1}+x_{2}\right) \dot{x}_{2} \\
& =-2 x_{1}^{2}-6\left(x_{1}+x_{2}\right)^{2}-2\left(x_{1}+x_{2}\right) h\left(x_{1}+x_{2}\right) \\
& \leq-2 x_{1}^{2}-6\left(x_{1}+x_{2}\right)^{2}, \forall\left|x_{1}+x_{2}\right| \leq 1 \\
& =-x^{T}\left[\begin{array}{ll}
8 & 6 \\
6 & 6
\end{array}\right] x
\end{aligned}
$$

$\dot{V}(x)$ is negative definite in $\left\{\left|x_{1}+x_{2}\right| \leq 1\right\}$

$$
b^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad c=\min _{\left|x_{1}+x_{2}\right|=1} x^{T} P x=\frac{1}{b^{T} P^{-1} b}=1
$$

$$
\begin{gathered}
\sigma=x_{1}+x_{2} \\
\frac{d}{d t} \sigma^{2}=2 \sigma x_{2}-8 \sigma^{2}-2 \sigma h(\sigma) \leq 2 \sigma x_{2}-8 \sigma^{2}, \forall|\sigma| \leq 1 \\
\text { On } \sigma=1, \quad \frac{d}{d t} \sigma^{2} \leq 2 x_{2}-8 \leq 0, \forall x_{2} \leq 4 \\
\text { On } \sigma=-1, \quad \frac{d}{d t} \sigma^{2} \leq-2 x_{2}-8 \leq 0, \quad \forall x_{2} \geq-4 \\
c_{1}=\left.V(x)\right|_{x_{1}=-3, x_{2}=4}=10, \quad c_{2}=\left.V(x)\right|_{x_{1}=3, x_{2}=-4}=10 \\
\Gamma=\left\{V(x) \leq 10 \text { and }\left|x_{1}+x_{2}\right| \leq 1\right\}
\end{gathered}
$$

is a subset of the region of attraction

