
Nonlinear Systems and Control
Lecture # 10

The Invariance Principle
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Example: Pendulum equation with friction

ẋ1 = x2

ẋ2 = − a sin x1 − bx2

V (x) = a(1 − cos x1) +
1

2
x2

2

V̇ (x) = aẋ1 sin x1 + x2ẋ2 = − bx2
2

The origin is stable. V̇ (x) is not negative definite because
V̇ (x) = 0 for x2 = 0 irrespective of the value of x1

However, near the origin x1 6= 0, the solution cannot stay
identically in the set {x2 = 0}
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Definitions: Let x(t) be a solution of ẋ = f(x)

A point p is said to be a positive limit point of x(t) if there is
a sequence {tn}, with limn→∞ tn = ∞, such that
x(tn) → p as n → ∞

The set of all positive limit points of x(t) is called the
positive limit set of x(t); denoted by L+

If x(t) approaches an asymptotically stable equilibrium
point x̄, then x̄ is the positive limit point of x(t) and L+ = x̄

A stable limit cycle is the positive limit set of every solution
starting sufficiently near the limit cycle
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A set M is an invariant set with respect to ẋ = f(x) if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ∈ R

Examples:

Equilibrium points

Limit Cycles

A set M is a positively invariant set with respect to
ẋ = f(x) if

x(0) ∈ M ⇒ x(t) ∈ M, ∀ t ≥ 0

Example:
The set Ωc = {V (x) ≤ c} with V̇ (x) ≤ 0 in Ωc
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The distance from a point p to a set M is defined by

dist(p, M) = inf
x∈M

‖p − x‖

x(t) approaches a set M as t approaches infinity, if for
each ε > 0 there is T > 0 such that

dist(x(t), M) < ε, ∀ t > T

Example: every solution x(t) starting sufficiently near a
stable limit cycle approaches the limit cycle as t → ∞

Notice, however, that x(t) does not converge to any specific
point on the limit cycle
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Lemma: If a solution x(t) of ẋ = f(x) is bounded and
belongs to D for t ≥ 0, then its positive limit set L+ is a
nonempty, compact, invariant set. Moreover, x(t)

approaches L+ as t → ∞

LaSalle’s theorem: Let f(x) be a locally Lipschitz function
defined over a domain D ⊂ Rn and Ω ⊂ D be a compact
set that is positively invariant with respect to ẋ = f(x). Let
V (x) be a continuously differentiable function defined over
D such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in
Ω where V̇ (x) = 0, and M be the largest invariant set in E.
Then every solution starting in Ω approaches M as t → ∞
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Note:

Here “largest" invariant set is understood in the sense
of set theory, i.e., M is the union of all invariant sets
(such as equilibrium points or limit cycles) within E.

If once V̇ (x) = 0, then V̇ (x) ≡ 0 for all future time,
then M = E.

Here V (x) does not have to be positive definite.
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Proof:

V̇ (x) ≤ 0 in Ω(compact) ⇒ V (x(t)) is a decreasing

V (x) is continuous in Ω ⇒ V (x) ≥ b = min
x∈Ω

V (x)

⇒ lim
t→∞

V (x(t)) = a

x(t) ∈ Ω ⇒ x(t) is bounded ⇒ L+ exists (Lemma)

Moreover, L+ ⊂ Ω and x(t) approaches L+ as t → ∞

For any p ∈ L+, there is {tn} with limn→∞ tn = ∞ such
that x(tn) → p as n → ∞

V (x) is continuous ⇒ V (p) = lim
n→∞

V (x(tn)) = a
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Why?
V (x) is continuous ⇒ V (p) = limn→∞ V (x(tn)) = a.

∀δ, ∃N, s.t. ‖x(tn) − p‖ < δ, ∀n ≥ N,

∀ǫ, ∃δ, s.t. ‖x − p‖ < δ ⇒ ‖V (x) − V (p)‖ < ǫ,

⇒∀ǫ, ∃N, s.t. ‖V (x(tn)) − V (p)‖ < ǫ, ∀n ≥ N

V (x) = a on L+ and L+ invariant ⇒ V̇ (x) = 0, ∀ x ∈ L+

L+ ⊂ M ⊂ E ⊂ Ω

x(t) approaches L+ ⇒ x(t) approaches M (as t → ∞)
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Theorem: Let f(x) be a locally Lipschitz function defined
over a domain D ⊂ Rn; 0 ∈ D. Let V (x) be a continuously
differentiable positive definite function defined over D such
that V̇ (x) ≤ 0 in D. Let S = {x ∈ D | V̇ (x) = 0}

If no solution can stay identically in S, other than the
trivial solution x(t) ≡ 0, then the origin is asymptotically
stable

Moreover, if Γ ⊂ D is compact and positively invariant,
then it is a subset of the region of attraction

Furthermore, if D = Rn and V (x) is radially
unbounded, then the origin is globally asymptotically
stable
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Example:

ẋ1 = x2

ẋ2 = −h1(x1) − h2(x2)

hi(0) = 0, yhi(y) > 0, for 0 < |y| < a

V (x) =

∫ x1

0

h1(y) dy + 1

2
x2

2

D = {−a < x1 < a, −a < x2 < a}

V̇ (x) = h1(x1)x2+x2[−h1(x1)−h2(x2)] = −x2h2(x2) ≤ 0

V̇ (x) = 0 ⇒ x2h2(x2) = 0 ⇒ x2 = 0

S = {x ∈ D | x2 = 0}
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ẋ1 = x2, ẋ2 = −h1(x1) − h2(x2)

x2(t) ≡ 0 ⇒ ẋ2(t) ≡ 0 ⇒ h1(x1(t)) ≡ 0 ⇒ x1(t) ≡ 0

The only solution that can stay identically in S is x(t) ≡ 0

Thus, the origin is asymptotically stable

Suppose a = ∞ and
∫ y
0

h1(z) dz → ∞ as |y| → ∞

Then, D = R2 and V (x) =
∫ x1

0
h1(y) dy + 1

2
x2

2 is radially
unbounded. S = {x ∈ R2 | x2 = 0} and the only solution
that can stay identically in S is x(t) ≡ 0

The origin is globally asymptotically stable
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Example: m-link Robot Manipulator
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Two-link Robot Manipulator
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M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) = u

q is an m-dimensional vector of joint positions

u is an m-dimensional control (torque) inputs

M = MT > 0 is the inertia matrix

C(q, q̇)q̇ accounts for centrifugal and Coriolis forces

(Ṁ − 2C)T = −(Ṁ − 2C)

Dq̇ accounts for viscous damping; D = DT ≥ 0

g(q) accounts for gravity forces; g(q) = [∂P (q)/∂q]T

P (q) is the total potential energy of the links due to gravity
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Investigate the use of the (PD plus gravity compensation)
control law

u = g(q) − Kp(q − q∗) − Kd q̇

to stabilize the robot at a desired position q∗, where Kp and
Kd are symmetric positive definite matrices

e = q − q∗, ė = q̇

Më = Mq̈

= −C q̇ − D q̇ − g(q) + u

= −C q̇ − D q̇ − Kp(q − q∗) − Kd q̇

= −C ė − D ė − Kp e − Kd ė
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Më = −C ė − D ė − Kp e − Kd ė

V = 1

2
ėT M(q)ė + 1

2
eT Kpe

V̇ = ėT Më + 1

2
ėT Ṁė + eT Kpė

= −ėT Cė − ėT Dė − ėT Kpe − ėT Kdė

+ 1

2
ėT Ṁė + eT Kpė

= 1

2
ėT (Ṁ − 2C)ė − ėT (Kd + D)ė

= −ėT (Kd + D)ė ≤ 0
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(Kd + D) is positive definite

V̇ = −ėT (Kd + D)ė = 0 ⇒ ė = 0

Më = −C ė − D ė − Kp e − Kd ė

ė(t) ≡ 0 ⇒ ë(t) ≡ 0 ⇒ Kpe(t) ≡ 0 ⇒ e(t) ≡ 0

By LaSalle’s theorem the origin (e = 0, ė = 0) is globally

asymptotically stable
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