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Nonlinear Systems and Control

Lecture# 10
Thelnvariance Principle



fExampIe: Pendulum equation with friction

T1

L2

To — asinx; — bxs

1
V(x) =a(l —cosxy) + Ewg

V(a:) = a&1sin Ty + ToLs = — bwg
The origin is stable. V' (x) is not negative definite because
V(z) = 0 for zo = 0 irrespective of the value of x;

However, near the origin 1 # 0, the solution cannot stay
Lidentically in the set {x2 = 0}
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fDefinitions: Let x(t) be a solution of & = f(x)
A point p is said to be a positive limit point of x(¢) if there is
a sequence {t,}, with lim,,_, - t,, = oo, such that

x(t,) — pasn — oo

The set of all positive limit points of x(¢) Is called the
positive limit set of x(t); denoted by LT

If x(t) approaches an asymptotically stable equilibrium
point Z, then Z is the positive limit point of z(t) and L™ = x

A stable limit cycle is the positive limit set of every solution
starting sufficiently near the limit cycle

-p.3/1




fA set M Is an invariant set with respectto @ = f(x) If
r(0) e M = x(t) e M, VtE R

Examples:
# Equilibrium points

# Limit Cycles

A set M Is a positively invariant set with respect to

= f(x)If
z(0) €M = z(t) €M, Yt>0

Example:
 ThesetQ, = {V(z) < c} with V(z) < 0in €,
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fThe distance from a point p to a set M is defined by

dist(p, M) = inf |lp — x|

x(t) approaches a set M as t approaches infinity, if for
each e > 0 thereis T > 0 such that
dist(xz(t), M) <e, YVt >T

Example: every solution x(t) starting sufficiently near a
stable limit cycle approaches the limit cycle as t — oo

Notice, however, that x(t) does not converge to any specific
point on the limit cycle
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fLemma: If a solution x(t) of € = f(x) Is bounded and

belongs to D for ¢ > 0, then its positive limit set LT is a
nonempty, compact, invariant set. Moreover, x(t)

approaches LT ast — oo

LaSalle’s theorem: Let f(x) be a locally Lipschitz function
defined over a domain D C R™ and 2 C D be a compact
set that is positively invariant with respectto & = f(x). Let
V (x) be a continuously differentiable function defined over

D such that V (z) < 0in Q. Let E be the set of all points in

Q where V (z) = 0, and M be the largest invariant set in E.
Then every solution starting in 2 approaches M ast — oo
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fNote: -

# Here “largest” invariant set is understood in the sense
of set theory, I.e., M Is the union of all invariant sets
(such as equilibrium points or limit cycles) within E.

# Ifonce V(x) = 0, then V(x) = 0 for all future time,
then M = E.

# Here V (x) does not have to be positive definite.
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fProof: -

V(z) <0 in Q(compact) = V(x(t)) is a decreasing

V(x)iscontinuousin Q = V(x)>b= mi{rzl V(x)
T

= tlim V(z(t)) =a
x(t) € Q@ = x(t)isbounded = LT exists (Lemma)

Moreover, L™ C Q and z(t) approaches LT ast — oo

Forany p € LT, there is {t,,} with lim,,_, t, = oo such
that z(t,,) —» pasn — oo

L V (x) Is continuous = V(p) = nli—>ngo V(x(tn,)) = a
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fWhy? o

V(x) Is continuous = V(p) =lim, V(x(t,)) = a.

Vé,IN, s.t. ||x(t,) — p|| < ,Vn > N,
Ve, 36, s.t.|lz —pl| <6 = ||[V(z) — V(D)|| < e
=Ve, AN, s.t. [|V(x(tn)) — V(p)|| < €,Vn > N

V(xz) =aon Lt and LT invariant = V(z) =0, Va € LT

LTCMCECSQ

x(t) approaches L™ = x(t) approaches M (as t — oo)

o
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fTheorem: Let f(x) be a locally Lipschitz function defined
overadomain D C R™;, 0 € D. Let V(x) be a continuously
differentiable positive definite function defined over D such

that V(z) < 0in D. LetS = {x € D | V(x) = 0}

# [f no solution can stay identically in S, other than the
trivial solution x(t) = 0, then the origin is asymptotically
stable

# Moreover, If I' C D Is compact and positively invariant,
then it is a subset of the region of attraction

o Furthermore, if D = R™ and V () Is radially
unbounded, then the origin is globally asymptotically

L stable
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fExampIe: -

T1

L2

—hl(ml) — h2($2)
h;(0) =0, yh;(y) >0, for0 < |y| <a

T2

V@) = [ m)dy + }a3

D={-a<zi1<a, —a<xzx<a}
V(x) = hi(x1)zo+x2[—hi(x1)—ho(x2)] = —x2ha(x2) < 0
V(z) =0 = zsha(z2) =0 = 2 =0
S={x € D|xx =0}

o
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-

o

1 = T2, x2 = —hi(r1) — h2(x2)
wz(t) =0= a'32(t) =0= hl(azl(t)) =0= ml(t) =0
The only solution that can stay identically in S'is (t) = 0

Thus, the origin is asymptotically stable
Suppose a = oo and [ h1(z) dz — oo as |y| — oo
Then, D = R?and V(z) = [y h1(y) dy + %a}% IS radially

unbounded. S = {x € R? | 3 = 0} and the only solution
that can stay identically in S'is x(t) = 0

The origin is globally asymptotically stable
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fExampIe: m-link Robot Manipulator

Load

L Two-link Robot Manipulator
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M(q)d+ C(q,9)d+ Dg+g(q) =u
q Is an m-dimensional vector of joint positions
u IS an m-dimensional control (torque) inputs
M = M7T > 0is the inertia matrix
C'(q, q)g accounts for centrifugal and Coriolis forces
(M —2C) = —(M — 20)
D¢ accounts for viscous damping; D = DT > 0
g(q) accounts for gravity forces; g(q) = [0P(q)/dq]*

P(q) is the total potential energy of the links due to gravity
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flnvestigate the use of the (PD plus gravity compensation)
control law

u=g(q) — Kp(q—q°) — Kaq

to stabilize the robot at a desired position g*, where K, and
K, are symmetric positive definite matrices

e=q—q, é=4¢g

Me

Mgq

—Cqg—Dg—g(q) +u
—Cq¢—Dqg—Ky(q—q") —Kaiq
—Cé—-Dé—Kpe—Kgqé
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o Mé=-Cé—Dé—Kpe—Kgé
V = %éTM(q)é—l— %eTer

V = éTMé+ LeéTMé + eTKpé

= —¢l'cée —él'Dé — el Kpe — el Kyé
+ 26T Mé + eTKé

= 2¢T(M —2C)é — éT(K4 + D)é

= —¢T(Ky+ D)é < 0
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f(Kd + D) Is positive definite
V=-¢(Ksy+D)é=0= é=0

Mé=-Cé—-—Dé—-—Kye—Kgé
e(t) =0 = €é(t) =0 = Kpe(t) =0 = e(t) =0

By LaSalle’s theorem the origin (e = 0,é = 0) is globally

asymptotically stable

o
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