ME 417 Design of Alternative Energy Systems

Quiz #1 Closed Book, Closed Notes

A direct methane-water fuel cell operates with the following overall reaction

 $CH_4 + 2O_2 + 2(3.76)N_2 \rightarrow CO_2 + 2H_2O + (7.52)N_2$

Determine the efficiency of this fuel cell at 298 K.

Equations and Data for Quiz #1

Enthalpy and Entropy Data

	CH_4	O_2	N_2	CO_2	H ₂ O
$\overline{h}_{f}(kJ/kmole)$	-74,850	0	0	-393,520	-241,820
$\overline{s}_{298}^{o}(kJ/kmole \cdot K)$	186.16	205.04	191.61	213.80	188.83

$$\begin{split} \overline{h} &= \overline{h}_{f} + \Delta \overline{h} \\ \overline{s}_{i} &= \overline{s}_{i}^{o} - R_{u} ln(y_{i}) \text{ with } R_{u} = 8.314 \text{ kJ/(kmole·K)} \\ y_{i} &= \frac{v_{i}}{\sum_{j} v_{j}} \\ \eta_{i} &= 1 - \frac{T_{FC} \left\{ \sum_{\text{reactants}} v_{i} \overline{s}_{i} - \sum_{\text{products}} v_{j} \overline{s}_{j} \right\}}{\sum_{\text{reactants}} v_{i} \overline{h}_{i} - \sum_{\text{products}} v_{j} \overline{h}_{j}} \end{split}$$