Buckling does not vary linearly with load
- it occurs suddenly and is therefore dangerous

\[P < P_{cr} = \frac{\pi^2EI}{L_e^2} \]

- \(E \) … modulus of Elasticity
- \(I \) … moment of inertia (smallest value)
- \(L_e \) … equivalent column length (length between zero bending)

Axis of least \(I \) and \(\rho \) becomes neutral bending axis

\[L_e = L \]

Both ends hinged

\(L_e = 0.707L \)

\(L_e = 0.8L \)

\(L_e = 0.65L \)

\(L_e = 1.2L \)

\(L_e = 2L \)

\(L_e = 2.1L \)
Elastically Unstable

\[P > P_{cr} = \frac{\pi^2 E I}{L_e^2} \]

with \(I = A \rho^2 \)

\[S_{cr} = \frac{\pi^2 E}{(L_e/\rho)^2} \]

\(\rho \) …radius of gyration

\(L_e/\rho \) …slenderness ratio

Valid for all materials!
J.B. Johnson Parabola (1900)

\[P > S_{cr} = S_y - \frac{S_y^2}{4\pi^2 E} \left(\frac{L_e}{\rho} \right)^2 \]

Euler Buckling

\[S_{cr} = \frac{\pi^2 E}{\left(\frac{L_e}{\rho} \right)^2} \]

- \(\rho \) ...radius of gyration
- \(L_e/\rho \)...slenderness ratio

![Graph](image.png)

Euler Column Buckling

- **Johnson Parabola**
 - \(E = 71 \text{ GPa}, \quad S_y = 496 \text{ MPa} \)
 - **Euler, \(E = 71 \text{ GPa} \)**

- **Euler, \(E = 203 \text{ GPa} \)**
 - \(S_y = 689 \text{ MPa} \)

- **Johnson, \(E = 203 \text{ GPa}, S_y = 689 \text{ MPa} \)**
 - Tangent points
Excentric Loaded Column

\[e = \frac{L_e}{400} \text{ or } \frac{e c}{\rho^2} = 0.025 \text{ is recommended} \]
Equivalent Column Stress

\[S_{cr} = \frac{S_y}{\alpha} \]

\(\alpha \)…stress multiplier

J.B. Johnson Parabola

\[P > S_{cr} = S_y - \frac{S_y^2}{4\pi^2E} \left(\frac{L_e}{\rho} \right)^2 \]

\[\alpha = \frac{S_y}{S_{cr}} = \frac{4\pi^2E}{4\pi^2E - S_y(L_e/\rho)^2} \]

Euler Buckling

\[S_{cr} = \frac{\pi^2E}{(L_e/\rho)^2} \]

\[\alpha = \frac{S_y}{S_{cr}} = \frac{S_y(L_e/\rho)^2}{\pi^2E} \]

Other Forms of Buckling

(a) Wrinkling, or "accordion buckling" of thin-wall tube

(b) Typical local buckling of an externally pressurized thin-wall tube

(c) Wrinkling of thin, unsupported flanges of a channel section