1.) A plant has the response, \(c(t) \), to a unit step, \(r(t) = u(t) \) as shown below.

(15 pts) a) Estimate the system’s time constant, 2% settling time and steady state gain. (Write results in boxes below)

\[
\begin{array}{|l|c|}
\hline
& \text{Time Constant (sec)} & \text{2% Settling Time} & \text{Steady-State Gain} \\
\hline
\end{array}
\]

(5 pts) b) What is the minimum order is the system transfer function based on the characteristics of the time response? (Write your result in the box provided)

Minimum System Order

(5 pts) c) For a system model of the minimum order in part b), Find the transfer function \(T(s) = C(s)/R(s) \). (Write your result in the box provided)

\[
G(s) =
\]

Transfer Function
2.) A plant has the response, $c(t)$, to a unit step, $a(t) = u(t)$ as shown below.

(15 pts)

a) From the graph, estimate the system’s time constant, % overshoot and steady state gain.
(Write results in boxes below)

<table>
<thead>
<tr>
<th>Time Constant (sec)</th>
<th>% Overshoot</th>
<th>Steady-State Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(10 pts)

b) What is the system's damped natural frequency and damping ratio?

<table>
<thead>
<tr>
<th>Damped Natural Freq (rad/sec)</th>
<th>Damping Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5 pts)

c) Using the above information, find the second order transfer function $T(s) = C(s)/R(s)$
(Write your result in the box provided)

$$G(s) =$$

Transfer Function
3. For the controlled system with control and plant shown below,

\[\begin{align*}
R(s) & \rightarrow E(s) \frac{k}{s+2} \rightarrow A(s) \frac{3(s+1)}{s^2 + 2s + 2} \rightarrow C(s) \\
&
\end{align*} \]

(5 pts) a) What is the closed-loop system’s characteristic polynomial?

Closed-Loop Characteristic Polynomial

(5 pts) b) What is the closed-loop error transfer function, \(\frac{E(s)}{R(s)} \)?

\[\frac{E(s)}{R(s)} = \]

Closed-Loop Error Transfer Function

(5 pts) c) For a unit step input \(r(t) = u(t) \) and \(k = 1 \), what’s the system’s closed-loop steady-state error?

\[e(\infty) = \]

Closed-Loop System Steady-State Error at \(k = 1 \)

\[\text{\ }/15 \]
(15 pts) 4) For the system,

\[
\begin{align*}
R(s) & \rightarrow E(s) \rightarrow C(s) \\
& \quad \mid k \frac{s+2}{s(s+1)(s+3)}
\end{align*}
\]

Draw the root locus for \(k \geq 0 \) noting where possible, range of stable gain, breakaway/breakin points, angles of departure/arrival, asymptotes, etc.
(10 pts) 5. For each characteristic equation given below, determine the stable range of parameter, K.

a) $s^3 - 4s^2 + 5s + 2K = 0$

b) $s^3 + 4s^2 + 5s + 2K = 0$

(5 pts) 6. For a system with the block diagram shown below, the closed-loop transfer function is most sensitive to changes in which component? (Circle the best answer below)

![Block Diagram]

a) the Controller $G_c(s)$
 b) the Plant $G_p(s)$
 or c) the Sensor $H(s)$