That is satisfied at the operating point. Find an equilibrium where all input and output signals are zero.

Identify the system model.

Six Steps to Linearization

1. Identify the system model’s inputs and outputs
2. Express the model in the form $f(r, \dot{r}, \ddot{r}, \ldots, \dot{c}, \ddot{c}, \ldots) = 0$
3. Find an equilibrium where all input and output derivatives are zero and the original model is satisfied at the operating point (r_0, c_0)

 $f(r, \dot{r}, \ddot{r}, \ldots) = f(r_0, 0, 0, \ldots) = 0$

 That is … Solve $f(r_0, c_0) = 0$

Typically you are given the output c and must find the input r.

4. Perform a Taylor Series expansion about the operating point retaining only 1st derivative terms.

 $f(r, \dot{r}, \ddot{r}, \ldots) = f(r_0, 0, 0, \ldots)$

 $\frac{\partial f}{\partial r} (r - r_0) + \frac{\partial f}{\partial \dot{r}} (\dot{r} - r_0) + \frac{\partial f}{\partial \ddot{r}} (\ddot{r} - r_0) + \ldots$

5. Change variables

 $r = (r - r_0)$, $\dot{r} = (\dot{r} - \dot{r}_0)$, $\ddot{r} = (\ddot{r} - \ddot{r}_0)$, etc.

 $\dot{c} = (\dot{c} - \dot{c}_0)$, $\ddot{c} = (\ddot{c} - \ddot{c}_0)$, etc.

6. Rewrite the Taylor Expansion in the new variables

 $f(r, \dot{r}, \ddot{r}, \ldots) = f(r_0, 0, 0, \ldots)$

 $\frac{\partial f}{\partial r} (r_0 - r) + \frac{\partial f}{\partial \dot{r}} (\dot{r}_0 - \dot{r}) + \frac{\partial f}{\partial \ddot{r}} (\ddot{r}_0 - \ddot{r}) + \ldots$

 $\frac{\partial f}{\partial c} (c_0 - c) + \frac{\partial f}{\partial \dot{c}} (\dot{c}_0 - \dot{c}) + \frac{\partial f}{\partial \ddot{c}} (\ddot{c}_0 - \ddot{c}) + \ldots$

Linearization of a Magnetic Bearing model

The magnetic bearing

- The magnetic bearing model

- The magnetic bearing's magnetic field relationship in the new variables

What is a linear system?

- A system having **Principle of Superposition**

 $u_1(t) \to y_1(t)$
 $u_2(t) \to y_2(t)$

 $\Rightarrow \alpha_1 u_1(t) + \alpha_2 u_2(t) \to \alpha_1 y_1(t) + \alpha_2 y_2(t)$

 $\forall \alpha_1, \alpha_2 \in \mathbb{R}$

A nonlinear system does not satisfy the principle of superposition.
The magnetic bearing model

1) Identify model input(s) and output(s)

2) Express the model in the $f(u_0) = 0$ form

3) Find an equilibrium for $x_0 = 2$ mm

4) Taylor Expansion about $(i_x, x_0) = (1A, 2 \text{ mm})$

5) Change Variables

System Responses

Chapter 4

- Responses of Linear Time-invariant Systems
 - Important input functions
 - Step Response:
 - Constant input, "easy to make", clear transient
 - Ramp Response:
 - Constant change in input, process control
 - Sinusoidal Response:
 - Constant Frequency, for vibration
 - Enough frequencies -- complete system description
 - All have observed properties that engineers use

0th Order systems

- Not in the book, but ...
- Much of Engineering design
 - Done with "instantaneous" algebraic models
 - The model is a simple "Gain"
- Output is always the input times a constant
 - The model is easy, so is the response computation

1st Order Time Response

- 1st order systems have a single derivative of the output variable
- The TF has a first order polynomial in the denominator

- For Engineering Conversation...
 - the second is more common - has physical meaning
1st Order Time Response
(Model has two parameters)

- For Engineering Conversation…
 - the second is more common - has physical meaning
 \[G(s) = \frac{C(s)}{R(s)} = \frac{b_0}{s + a_0} \quad \text{OR} \quad G(s) = \frac{C(s)}{R(s)} = \frac{K}{\tau s + 1} \]
- Time Constant, \(\tau \) indicates “speed of response”
- (Steady-State) Gain \(K \) indicates “strength of response”
 \[\tau = \frac{1}{a_0} \quad \text{and} \quad K = b_0/a_0 \]

1st Order Step Response

- For the 1st order system with TF
 \[\frac{C(s)}{R(s)} = \frac{K}{\tau s + 1} \]
- And step unit input
 \[R(s) = \frac{1}{s} \]
- The output is...
 \[C(s) = \left(\frac{K}{\tau s + 1} \right) \frac{1}{s} = \frac{K}{s(\tau s + 1)} = \frac{K/\tau}{s(1/\tau)} = \frac{K}{s} + \frac{-K}{s(1/\tau)} \]

Summary and Exercises

- Modeling of
 - Nonlinear systems with linearization
- Next
 - 2nd Order System Time Response