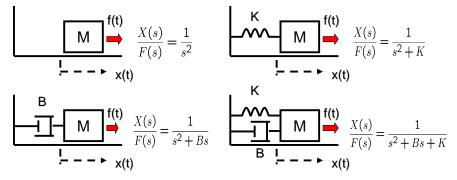


Simple mechanical examples

We want mass to stay at x=0, but wind gave some initial speed (F(t)=0). What will happen?



How to characterize different behaviors with TF?

Stability

- Utmost important specification in control design!
- Unstable systems have to be stabilized by feedback.
- Unstable closed-loop systems are useless.
 - What happens if a system is unstable?
 - may hit mechanical/electrical "stops" (saturation)
 - may break down or burn out

What happens if a system is unstable?

Tacoma Narrows Bridge (July 1-Nov.7, 1940)

Wind-induced vibration

Collapsed!

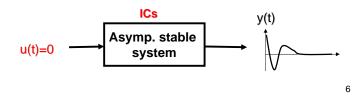
2008...

Mathematical definitions of stability

 BIBO (Bounded-Input-Bounded-Output) stability : Any bounded input generates a bounded output.
 ICs=0
 V(t)

Asymptotic stability :

Any ICs generates y(t) converging to zero.



Some terminologies

$$G(s) = \frac{n(s)}{d(s)}$$

Ex. $G(s) = \frac{(s-1)(s+1)}{(s+2)(s^2+1)}$

Zero : roots of n(s)

(Zeros of G) = ± 1

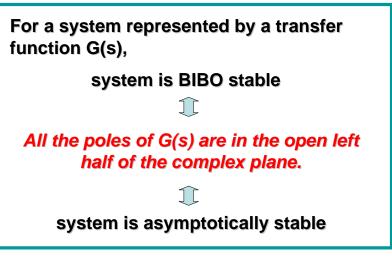
5

7

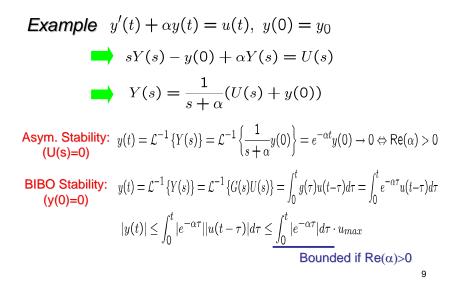
• **Pole**: roots of d(s) (Poles of G) = $-2, \pm j$

- Characteristic polynomial : d(s)
- Characteristic equation : d(s)=0

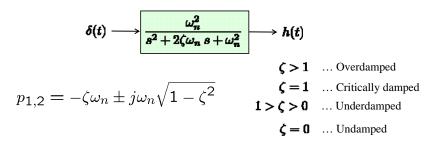
Stability condition in s-domain (Proof omitted, and not required)



"Idea" of stability condition



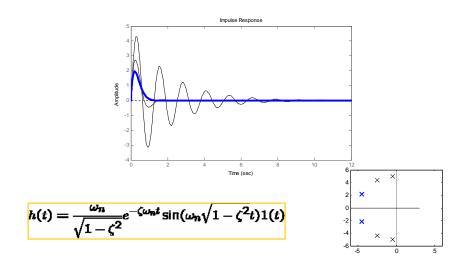
Second order impulse response-Underdamped and Undamped



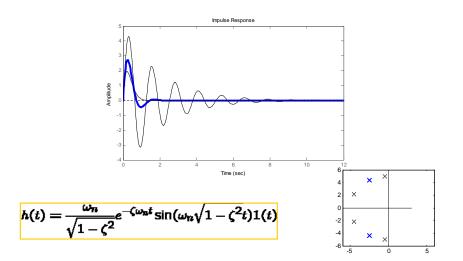
$$h(t) = rac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n t} \sin(\omega_n \sqrt{1-\zeta^2} t) \mathbf{1}(t)$$

10

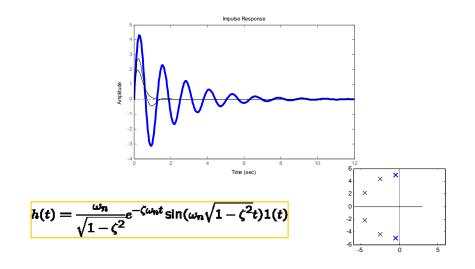
Second order impulse response – Underdamped and Undamped Changing ζ / Fixed ω_n



Second order impulse response – Underdamped and Undamped Changing ζ / Fixed ω_n



Second order impulse response – Underdamped and Undamped Changing ζ / Fixed ω_n



Remarks on stability

- For a general system (nonlinear etc.), BIBO stability condition and asymptotic stability condition are different.
- For linear time-invariant (LTI) systems (to which we can use Laplace transform and we can obtain a transfer function), the conditions happen to be the same.
- In this course, we are interested in only LTI systems, we use simply "stable" to mean both BIBO and asymptotic stability.

Remarks on stability (cont'd)

- Marginally stable if
 - G(s) has no pole in the open RHP (Right Half Plane), &
 - G(s) has at least one simple pole on $j\omega$ -axis, &
 - G(s) has no multiple poles on $j\omega$ -axis.

$$G(s) = \frac{1}{s(s^2 + 4)(s + 1)} \qquad G(s) = \frac{1}{s(s^2 + 4)^2(s + 1)}$$

Marginally stable NOT marginally stable

 Unstable if a system is neither stable nor marginally stable.

Examples

14

16

Repeated poles

$$\mathcal{L}^{-1}\left[\frac{2\omega s}{(s^2+\omega^2)^2}\right] = t\sin\omega t \qquad \mathcal{L}^{-1}\left[\frac{s^2-\omega^2}{(s^2+\omega^2)^2}\right] = t\cos\omega t$$
$$\cdots = t^2\sin\omega t \qquad \cdots = t^2\cos\omega t$$

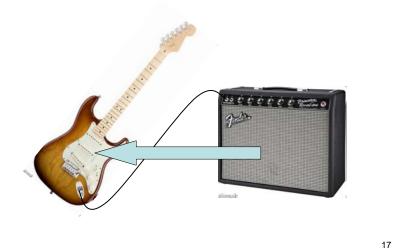
Does marginal stability imply BIBO stability?

TF:
$$G(s) = \frac{2s}{(s^2 + 1)}$$

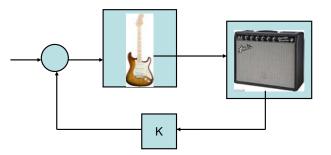
• Pick
$$u(t) = \sin t \quad \overrightarrow{\mathcal{L}} \quad U(s) = \frac{1}{(s^2 + 1)}$$

• Output
$$\mathcal{L}^{-1}\left[Y(s) = G(s)U(s) = \frac{2s}{(s^2+1)^2}\right] = t \sin t$$

Feedback Technique

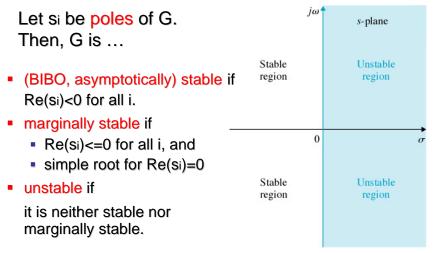


Positive Feedback

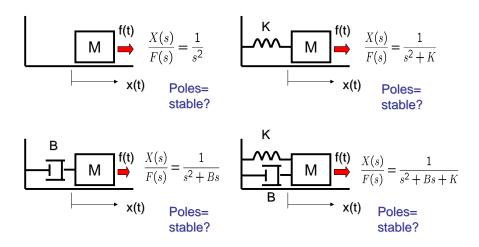


K will depends on the distance between the guitar and the amplifier.

Stability summary



Mechanical examples: revisited



Examples

G(s)	Stable/marginally stable /unstable
$\frac{5(s+2)}{(s+1)(s^2+s+1)}$?
$\frac{5(-s+2)}{(s+1)(s^2+s+1)}$?
$\frac{5}{(s-2)(s^2+3)}$?
$\frac{s^2 + 3}{(s+1)(s^2 - s + 1)}$?
$\frac{1}{(s+1)(s^2+1)^2}$?
$\frac{1}{(s^2-1)(s+1)}$???
	21

Summary and Exercises

- Stability for LTI systems
 - (BIBO and asymptotically) stable, marginally stable, unstable
 - Stability for G(s) is determined by poles of G.
- Next
 - Routh-Hurwitz stability criterion to determine stability without explicitly computing the poles of a system.
- Exercises
 - Solve examples in the previous slide.