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Design examples

Simple mechanical examples

= We want mass to stay at x=0, but wind gave some
initial speed (F(t)=0). What will happen?
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= How to characterize different behaviors with TF?

Stability

= Utmost important specification in control design!

= Unstable systems have to be stabilized by
feedback.

= Unstable closed-loop systems are useless.
= What happens if a system is unstable?
* may hit mechanical/electrical “stops” (saturation)
* may break down or burn out




What happens if a system is unstable?
Tacoma Narrows Bridge (July 1-Nov.7, 1940)

Mathematical definitions of stability

= BIBO (Bounded-Input-Bounded-Output) stability :
Any bounded input generates a bounded output.
ICs=0
u(t) y(t)

BIBO stable
system

= Asymptotic stability :
Any ICs generates y(t) converging to zero.
ICs y(®)
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- - Stability condition in s-domain
Some termlnologles (Proof omitted, and not required)
_n(s) (s—1)(s+1)
G(s) = n EX. ((s) = For a system represented by a transfer
d(s) ) (s+2)(s2+1) function G(s),

Zero : roots of n(s) (Zeros of G) = £1

(Poles of G) = -2, 4j

Pole : roots of d(s)

Characteristic polynomial : d(s)

Characteristic equation : d(s)=0

system is BIBO stable
i

All the poles of G(s) are in the open left
half of the complex plane.
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system is asymptotically stable




“ldea” of stability condition

Example y'(t) +ay(t) = u(t), y(0) =yo

sY(s) —y(0) +aY(s) =U(s)
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Asym. Stability: y(t) = £ {Y(s)} = £ {_y(o)} =¢7%(0) - 0 & Re(a) > 0

(U(s)=0)

BIBO Stability: ) :E‘I{Y(s)} =E_1{G(S)U(S)} = /OV‘g(T)u(t—T)dT =/Ve'mu(t—r)dr

(y(0)=0)
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Bounded if Re(a)>0
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Second order impulse response-
Underdamped and Undamped

wh
5 2 + 2w 8+ W2 h(t)

¢>1 ... Overdamped
— . 2 ¢=1 .. Critically damped
P12 = Cwn £ jwn\/ﬁ L>¢ >0 ... Underdamped

¢=0 ... Undamped

— —Cnk
h(t) = ﬁe sin(wny 1 — ¢2)1(£)
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Second order impulse response —

Un erdamﬁped and Undamped
Changing (/ Fixed
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Second order impulse response —

Un erdamuped and Undamped
Changing (/ Fixed

Impulse Response
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Second order impulse response —

Underdamﬁped and Undamped
Changing { / Fixed whq

Impulse Response
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Remarks on stability

» For a general system (nonlinear etc.), BIBO
stability condition and asymptotic stability
condition are different.

= For linear time-invariant (LTI) systems (to which
we can use Laplace transform and we can
obtain a transfer function), the conditions
happen to be the same.

= |n this course, we are interested in only LTI
systems, we use simply “stable” to mean both
BIBO and asymptotic stability.
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Remarks on stability (cont'd)

» Marginally stable if
= G(s) has no pole in the open RHP (Right Half Plane), &
= G(s) has at least one simple pole on  jw-axis, &
= G(s) has no multiple poles on jw -axis.

1 1
G - =
(s) s(s2+4)(s+1) Gls) s(s24+4)2(s+1)
Marginally stable NOT marginally stable

= Unstable if a system is neither stable nor
marginally stable.
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Examples
» Repeated poles
_1 2ws . 1] s2—w? |
Ve {(824-«12)2} =tsinwt [~ {(32+w2)2J = tcoswt
.. = £2sinwt ... =t2coswt

= Does marginal stability imply BIBO stability?

2s

= TF: G(s) = 2+1)
. - 1
= Pick u() =sint £ Ve =tery
= Qutput -1 Y(s)zG(s)U(s)zi =tsint

(s2+1)2
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Feedback Technique
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Positive Feedback

K will depends on the distance between the guitar and the ampilifier.
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Stability summary

&

Mechanical examples: revisited

Let si be poles of G. 4 s-plane
Then, Gis ...
Sta!)]c llnst_uh]c
= (BIBO, asymptatically) stable if  region region
Re(si)<0 for all i.
= marginally stable if L
= Re(si)<=0 for all i, and . e
= simple root for Re(si)=0
= unstable i - iy
it is neither stable nor
marginally stable.
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Examples

G(s)

Stable/marginally stable

lunstable

5(s+2)

GHDE s 1)
5(—s+2)

(s+1)(s2+s+1)
5
(s —2)(s2+3)
243
(s+1)(s2-s+1)
1
(s+1)(s2+1)2
1
(s2—1)(s+1)

?2??
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Summary and Exercises

= Stability for LTI systems

= (BIBO and asymptotically) stable, marginally stable,
unstable

= Stability for G(s) is determined by poles of G.
= Next

» Routh-Hurwitz stability criterion to determine stability
without explicitly computing the poles of a system.

= Exercises
= Solve examples in the previous slide.
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