

What is a linear system?

A system having Principle of Superposition

$$\begin{array}{c} u(t) & y(t) \\ & & y(t) \\ \end{array}$$

$$\begin{array}{c} u_1(t) \to y_1(t) \\ u_2(t) \to y_2(t) \end{array} \right\} \Rightarrow \alpha_1 u_1(t) + \alpha_2 u_2(t) \to \alpha_1 y_1(t) + \alpha_2 y_2(t) \\ & \forall \alpha_1, \alpha_2 \in \mathbb{R} \end{array}$$

A nonlinear system does not satisfy the principle of superposition.

Linear systems

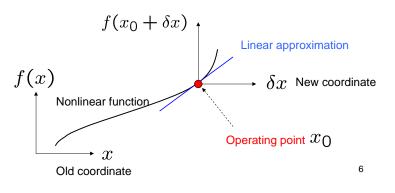
- Easier to understand and obtain solutions
- Linear ordinary differential equations (ODEs),
 - Homogeneous solution and particular solution
 - Transient solution and steady state solution
 - Solution caused by initial values, and forced solution
- Add many simple solutions to get more complex ones (use superposition!)
- Easy to check the Stability of stationary states (Laplace Transform)

Why linearization?

- Real systems are inherently nonlinear. (Linear systems do not exist!) *Ex.* f(t)=Kx(t), v(t)=Ri(t)
- TF models are only for linear time-invariant (LTI) systems.
- Many control analysis/design techniques are available for linear systems.
- Nonlinear systems are difficult to deal with mathematically.
- Often we linearize nonlinear systems before analysis and design. How?

How to linearize it?

- Nonlinearity can be approximated by a linear function for small deviations δx around an operating point x_0
- Use a Taylor series expansion



Linearization

5

7

- Nonlinear system: $\dot{x} = f(x, u)$
- Let u₀ be a nominal input and let the resultant state be x₀
- Perturbation: $u(\cdot) = u_o(\cdot) + \delta u(\cdot)$
- Resultant perturb: $x(\cdot) = x_o(\cdot) + \delta x(\cdot)$
- Taylor series expansion:

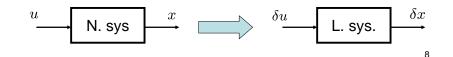
$$f(x,u) = f(x_0, u_0) + \frac{\partial f(x, u)}{\partial x}\Big|_{\substack{x=x_0\\u=u_0}}^{x=x_0} \delta x + \frac{\partial f(x, u)}{\partial x}\Big|_{\substack{x=x_0\\u=u_0}}^{x=x_0} \delta u + \underbrace{\text{H.O.T.}}_{\approx 0}.$$

Linearization (cont.)

$$\dot{x}_0 + \delta \dot{x} = f(x_0, u_0) + \frac{\partial f(x, u)}{\partial x} |_{\substack{x = x_0 \\ u = u_0}} \delta x + \frac{\partial f(x, u)}{\partial x} |_{\substack{x = x_0 \\ u = u_0}} \delta u$$

notice that $\dot{x}_0 = f(x_0, u_0)$; hence

$$\delta \dot{x} = f(x_0, u_0) + \frac{\partial f(x, u)}{\partial x} \Big|_{\substack{x = x_0 \\ u = u_0}} \delta x + \frac{\partial f(x, u)}{\partial x} \Big|_{\substack{x = x_0 \\ u = u_0}} \delta u$$



Linearization of a pendulum model

- Linearize it at $\theta_0 = \pi$

• Find
$$u_0$$
 $\ddot{\pi} + \frac{g \sin \pi}{L} - \frac{u_0}{mL^2} = 0 \rightarrow u_0 = 0$

• New coordinates: $\theta = \theta_0 + \delta \theta = \pi + \delta \theta$ $u = u_0 + \delta u = 0 + \delta u$

Time delay transfer function

TF derivation

 $y(t)=x(t-T_d)$ $(T_d:$ delay time)

 The more time delay is, the more difficult to control (Imagine that you are controlling the temperature of your shower with a very long hose. You will either get burned or frozen!)

Linearization of a pendulum model (cont')

• Taylor series expansion of $f(\theta, u)$ at $\theta = \pi, u = 0$

$$\frac{\partial f(\theta, u)}{\partial \theta}\Big|_{\substack{\theta=\pi\\u=0}} = \frac{g\cos\theta}{L}\Big|_{\theta=\pi} = -\frac{g}{L}$$
$$\frac{\partial f(\theta, u)}{\partial u}\Big|_{\substack{\theta=\pi\\u=0}} = -\frac{1}{mL^2}$$

$$\delta\ddot{\theta} + \frac{\partial f(\theta, u)}{\partial \theta}|_{\substack{\theta=\pi\\u=0}} \delta\theta + \frac{\partial f(\theta, u)}{\partial u}|_{\substack{\theta=\pi\\u=0}} \delta u = 0$$

$$\delta\ddot{\theta} - \frac{g}{L}\delta\theta - \frac{1}{mL^2}\delta u = 0$$

10

Summary and Exercises

- Modeling of
 - Nonlinear systems
 - Systems with time delay
- Next
 - Modeling of DC motors
- Exercises
 - Linearize the pendulum model at π/4

9