ME451: Control Systems

Lecture 5 Modeling of mechanical systems

Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University

Course roadmap

Time-invariant & time-varying

- A system is called *time-invariant (time-varying)* if system parameters do not (do) change in time.
- Example: Mx''(t)=f(t) & M(t)x''(t)=f(t)
- For time-invariant systems:

This course deals with time-invariant systems.

Newton's laws of motion

- 1st law:
 - A particle remains at rest or continues to move in a straight line with a constant velocity if there is no unbalancing force acting on it.
- 2nd law:

•
$$\sum F_i(t) = m \frac{d^2 x}{dt^2}$$
 : translational

•
$$\sum au_i(t) = I rac{d^2 heta}{dt^2}$$
 : rotational

- 3rd law:
 - For every action has an equal and opposite reaction

1

Mass-spring-damper system

Mx''(t) + Bx'(t) + Kx(t) = f(t)

6

Free body diagram

Mass-spring-damper system

- Equation of motion Mx''(t) + Bx'(t) + Kx(t) = f(t)
- By Laplace transform (with zero initial conditions),

$$X(s) = \frac{1}{Ms^2 + Bs + K}F(s)$$
 (2nd order system)

Automobile suspension system

Automobile suspension system

Rotational mechanical elements (constitutive equations)

10

Torsional pendulum system Ex.2.12

Torsional pendulum system

Example (cont'd)

From second equation:

$$\Theta_L(s) = \underbrace{\frac{K}{\underbrace{J_L s^2 + K}_{G_1(s)}}}_{G_1(s)} \Theta_m(s) \quad \text{(2nd order system)}$$

From first equation:

$$\Theta_m(s) = \underbrace{\frac{J_L s^2 + K}{s\left(J_m J_L s^3 + B_m J_L s^2 + K(J_m + J_L)s + B_m K\right)}}_{G_2(s)} T_m(s)$$
(4th order system)

Block diagram

Rigid satellite Ex. 2.13

Satellite Picture

Summary & Exercises

- Modeling of mechanical systems
 - Translational
 - Rotational
- Next, block diagrams.
- Exercises
 - Derive equations for the automobile suspension problem.

17

18

Exercises (Franklin et al.)

 Quarter car model: Obtain a transfer function from R(s) to Y(s).

