ME451: Control Systems

Lecture 5

Modeling of mechanical systems

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

Time-invariant \& time-varying

- A system is called time-invariant (time-varying) if system parameters do not (do) change in time.
- Example: $M x^{\prime \prime}(t)=f(t) \& M(t) x "(t)=f(t)$
- For time-invariant systems:

- This course deals with time-invariant systems.

Newton's laws of motion

- $1^{\text {st }}$ law:
- A particle remains at rest or continues to move in a straight line with a constant velocity if there is no unbalancing force acting on it.
- $2^{\text {nd }}$ law:
- $\sum F_{i}(t)=m \frac{d^{2} x}{d t^{2}}$: translational
- $\sum \tau_{i}(t)=I \frac{d^{2} \theta}{d t^{2}} \quad$: rotational
- $3^{\text {rd }}$ law:
- For every action has an equal and opposite reaction

Translational mechanical elements:

 (constitutive equations)Mass

Spring

Damper

$$
\begin{aligned}
f(t) & =M x^{\prime \prime}(t) \quad f(t)=K\left(x_{1}(t)-x_{2}(t)\right) f(t)=B\left(x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right) \\
& \quad\binom{x(0)=0}{\dot{x}(0)=0}
\end{aligned}
$$

$$
F(s)=M s^{2} X(s) \quad F(s)=K\left(X_{1}(s)-X_{2}(s)\right) \quad F(s)=B s\left(X_{1}(s)-X_{2}(s)\right)
$$

Mass-spring-damper system

$$
M x^{\prime \prime}(t)+B x^{\prime}(t)+K x(t)=f(t)
$$

Free body diagram

- Newton's law: F=ma

$$
M x^{\prime \prime}(t)=f(t)-f_{k}(t)-f_{b}(t)=f(t)-K x(t)-B x^{\prime}(t)
$$

Mass-spring-damper system

- Equation of motion

$$
M x^{\prime \prime}(t)+B x^{\prime}(t)+K x(t)=f(t)
$$

- By Laplace transform (with zero initial conditions),

$$
X(s)=\frac{1}{M s^{2}+B s+K} F(s) \quad\left(2^{\text {nd }} \text { order system }\right)
$$

Gravity?

- At rest, $\quad \sum F_{i}=-k \delta+m g=0$
- y coordinate: $m \ddot{y}=m g-k y$
- X coordinate: $m \ddot{x}=m g-k(x+\delta)$

Automobile suspension system

$$
\left\{\begin{array}{l}
M_{1} x_{1}^{\prime \prime}(t)=-B\left(x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right)-K_{1}\left(x_{1}(t)-x_{2}(t)\right) \\
M_{2} x_{2}^{\prime \prime}(t)=f(t)-B\left(x_{2}^{\prime}(t)-x_{1}^{\prime}(t)\right)-K_{1}\left(x_{2}(t)-x_{1}(t)\right)-K_{2} x_{2}(t)
\end{array}\right.
$$

Automobile suspension system

$$
\left\{\begin{array}{l}
M_{1} x_{1}^{\prime \prime}(t)=-B\left(x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right)-K_{1}\left(x_{1}(t)-x_{2}(t)\right) \\
M_{2} x_{2}^{\prime \prime}(t)=f(t)-B\left(x_{2}^{\prime}(t)-x_{1}^{\prime}(t)\right)-K_{1}\left(x_{2}(t)-x_{1}(t)\right)-K_{2} x_{2}(t)
\end{array}\right.
$$

$$
\begin{gathered}
\text { Laplace transform with zero ICs } \\
\left\{\begin{array}{l}
M_{1} s^{2} X_{1}(s)=-B\left(s X_{1}(s)-s X_{2}(s)\right)-K_{1}\left(X_{1}(s)-X_{2}(s)\right) \\
M_{2} s^{2} X_{2}(s)=
\end{array}\right)\left(s(s)-B\left(s X_{2}(s)-s X_{1}(s)\right)-K_{1}\left(X_{2}(s)-X_{1}(s)\right)-K_{2} X_{2}(s)\right.
\end{gathered} ~ .
$$

Block diagram

$$
\left\{\begin{array}{l}
X_{1}(s)=\underbrace{\frac{B s+K_{1}}{M_{1} s^{2}+B s+K_{1}}}_{G_{1}(s)} X_{2}(s) \\
X_{2}(s)=\underbrace{\frac{1}{M_{2} s^{2}+B s+K_{1}+K_{2}}}_{G_{2}(s)} F(s)+\underbrace{\frac{B s+K_{1}}{M_{2} s^{2}+B s+K_{1}+K_{2}}}_{G_{3}(s)} X_{1}(s)
\end{array}\right.
$$

Rotational mechanical elements

 (constitutive equations)
rotation angle

Rotational spring Friction

$$
\begin{array}{rlr}
\tau(t)=J \theta^{\prime \prime}(t) & \tau(t)=K\left(\theta_{1}(t)-\theta_{2}(t)\right) & \tau(t)=B\left(\theta_{1}^{\prime}(t)-\theta_{2}^{\prime}(t)\right) \\
& \binom{\theta(0)=0}{\dot{\theta}(0)=0} & \\
\left.T(s)=J s^{\Theta_{1}(0)=0} \begin{array}{l}
\Theta_{2}(0)=0
\end{array}\right) \\
T(s) & T(s)=K\left(\Theta_{1}(s)-\Theta_{2}(s)\right) & T(s)=B s\left(\Theta_{1}(s)-\Theta_{2}(s)\right)
\end{array}
$$

Torsional pendulum system Ex.2.12

$$
J \theta^{\prime \prime}(t)+B \theta^{\prime}(t)+K \theta(t)=\tau(t)
$$

Torsional pendulum system

- Equation of Motion

$$
J \theta^{\prime \prime}(t)+B \theta^{\prime}(t)+K \theta(t)=\tau(t)
$$

- By Laplace transform (with zero ICs),

$$
G(s)=\frac{\Theta(s)}{T(s)}=\frac{1}{J s^{2}+B s+K} \quad\left(2^{\text {nd }} \text { order system }\right)
$$

Example

- FBD

Example

$\tau_{b}=B_{m}\left(\dot{\theta}_{m}-0\right) \quad \tau_{k}=K\left(\theta_{m}-\theta_{L}\right)$

- By Newton's law

$$
\left\{\begin{aligned}
J_{m} \theta_{m}^{\prime \prime}(t) & =\tau_{m}(t)-B_{m} \theta_{m}^{\prime}(t)-K\left(\theta_{m}(t)-\theta_{L}(t)\right) \\
J_{L} \theta_{L}^{\prime \prime}(t) & =K\left(\theta_{m}(t)-\theta_{L}(t)\right)
\end{aligned}\right.
$$

- By Laplace transform (with zero ICs),

$$
\left\{\begin{aligned}
J_{m} s^{2} \Theta_{m}(s) & =T_{m}(s)-B_{m} s \Theta_{m}(s)-K\left(\Theta_{m}(s)-\Theta_{L}(s)\right) \\
J_{L} s^{2} \Theta_{L}(s) & =K\left(\Theta_{m}(s)-\Theta_{L}(s)\right)
\end{aligned}\right.
$$

Example (cont'd)

- From second equation:

$$
\Theta_{L}(s)=\underbrace{\frac{K}{J_{L} s^{2}+K}}_{G_{1}(s)} \Theta_{m}(s) \quad \text { (2nd order system })
$$

- From first equation:

$$
\Theta_{m}(s)=\underbrace{\frac{J_{L} s^{2}+K}{\left(4^{\text {th }} \text { order system }\right)}}_{G_{2}(s)} T_{m}(s)
$$

Block diagram $\xrightarrow{T_{m}(s)} \mathbf{G 2}^{\Theta_{m}(s)} \mathbf{G 1}^{\Theta_{L}(s)}$

Satellite Picture

Rigid satellite Ex. 2.13

- Broadcasting
- Weather forecast
$\tau(t)=J \ddot{\theta}(t)$
- Communication
- GPS, etc.
$\Rightarrow G(s)=\frac{\Theta(s)}{T(s)}=\frac{1}{J s^{2}} \quad \begin{gathered}\text { Double } \\ \text { integrator }\end{gathered}$

Summary \& Exercises

- Modeling of mechanical systems
- Translational
- Rotational
- Next, block diagrams.
- Exercises
- Derive equations for the automobile suspension problem.

Exercises (Franklin et al.)

- Quarter car model: Obtain a transfer function from $R(s)$ to $Y(s)$.

