ME451: Control Systems

Lecture 5 Modeling of mechanical systems

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

2

Time-invariant & time-varying

- A system is called time-invariant (time-varying) if system parameters do not (do) change in time.
- Example: Mx"(t)=f(t) & M(t)x"(t)=f(t)
- For time-invariant systems:

This course deals with time-invariant systems.

Newton's laws of motion

- 1st law:
 - A particle remains at rest or continues to move in a straight line with a constant velocity if there is no unbalancing force acting on it.
- 2nd law:

• $\sum F_i(t) = m \frac{d^2x}{dt^2}$: translational

• $\sum \tau_i(t) = I \frac{d^2 \theta}{dt^2}$: rotational

3rd law:

3

For every action has an equal and opposite reaction

Translational mechanical elements: (constitutive equations)

$$f(t) = Mx''(t) f(t) = K(x_1(t) - x_2(t)) f(t) = B(x'_1(t) - x'_2(t))$$

$$\downarrow (x_1(0) = 0) \downarrow (x_2(0) = 0)$$

$$F(s) = Ms^2X(s)$$
 $F(s) = K(X_1(s) - X_2(s))$ $F(s) = Bs(X_1(s) - X_2(s))$

Mass-spring-damper system

6

Free body diagram

Direction of actual force will be automatically determined by the relative values!

7

Newton's law: F=ma

Mass-spring-damper system

- Equation of motion
- By Laplace transform (with zero initial conditions),

(2nd order system)

Gravity?

- At rest.
- y coordinate:
- x coordinate:

Automobile suspension system

Automobile suspension system

Laplace transform with zero ICs

Block diagram

11

Rotational mechanical elements (constitutive equations)

Rotational spring

Friction

rotation angle

$$\tau(t) = J\theta''(t) \qquad \tau(t) = K(\theta_1(t) - \theta_2(t)) \qquad \tau(t) = B(\theta_1'(t) - \theta_2'(t))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$T(s) = Js^2\Theta(s)$$
 $T(s) = K(\Theta_1(s) - \Theta_2(s))$ $T(s) = Bs(\Theta_1(s) - \Theta_2(s))$

Torsional pendulum system Ex.2.12

Torsional pendulum system

- Equation of Motion
- By Laplace transform (with zero ICs),

(2nd order system)

14

Example

- By Newton's law
- By Laplace transform (with zero ICs),

Example (cont'd)

From second equation:

(2nd order system)

From first equation:

(4th order system)

15

13

Rigid satellite Ex. 2.13

- Broadcasting
- Weather forecast
- Communication
- GPS, etc.

$$\tau(t) = J\ddot{\theta}(t)$$

 $G(s) = \frac{\Theta(s)}{T(s)} = \frac{1}{Js^2}$

Double integrator

17

Summary & Exercises

- Modeling of mechanical systems
 - Translational
 - Rotational
- Next, block diagrams.
- Exercises
 - Derive equations for the automobile suspension problem.

Exercises (Franklin et al.)

 Quarter car model: Obtain a transfer function from R(s) to Y(s).

