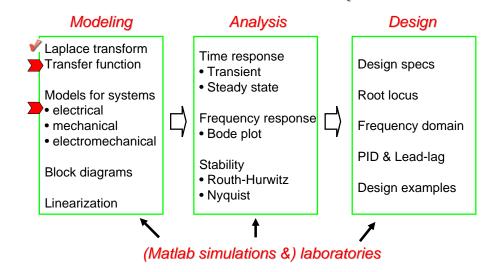
ME451: Control Systems

Lecture 4 Modeling of electrical systems

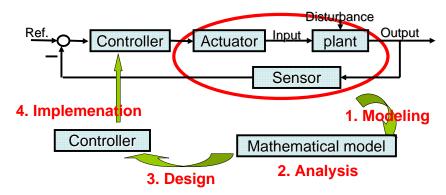
Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap



2

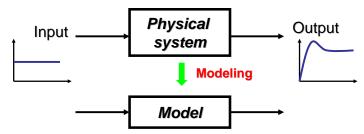
Controller design procedure (review)



- What is the "mathematical model"?
- Transfer function
- Modeling of electrical circuits

Mathematical model

 Representation of the input-output (signal) relation of a physical system



 A model is used for the analysis and design of control systems.

3

4

Important remarks on models

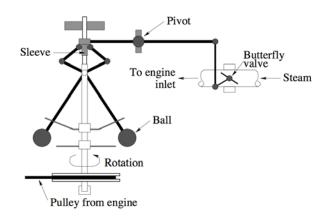
- Modeling is the most important and difficult task in control system design.
- No mathematical model exactly represents a physical system.

Math model \neq Physical system Math model \approx Physical system

- Do not confuse models with physical systems!
- In this course, we may use the term "system" to mean a mathematical model.

A Brief Control History

- 1788: James Watt's fly-ball governor
 - Mechanical feedback control of steam supply to an engine

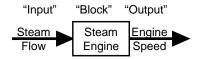


6

8

The Block Diagram

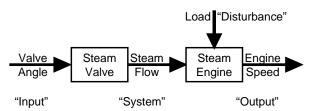
- Communication tool for Engineering Systems
 - Composed of Blocks with inputs and outputs



5

The Block Diagram

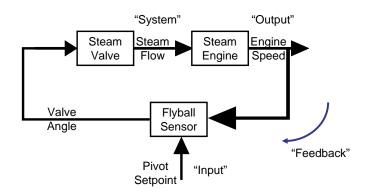
- Blocks Connect to form systems
 - Outputs of one block becomes input to another



7

The Block Diagram

- Blocks Connect to form systems
 - Outputs of one block becomes input to another



9

11

Transfer function

A transfer function is defined by

$$U(s) \longrightarrow G(s) \longrightarrow Y(s)$$

 A system is assumed to be at rest. (Zero initial condition)

10

Impulse response

 Suppose that u(t) is the unit impulse function and system is at rest.

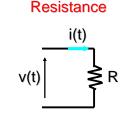
$$u(t) = \delta(t)$$

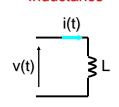
$$U(s) = 1$$
System
$$g(t)$$

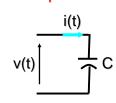
- The output g(t) for the unit impulse input is called impulse response.
- Since U(s)=1, the transfer function can also be defined as the Laplace transform of impulse response: $G(s) := \mathcal{L}\{g(t)\}$

Models of electrical elements: (constitutive equations)

Inductance







Capacitance

$$v(t) = Ri(t)$$

$$v(t) = Ri(t)$$
 $v(t) = L\frac{di(t)}{dt}$ $i(t) = C\frac{dv(t)}{dt}$

$$i(t) = C\frac{dv(t)}{dt}$$

$$\int (i(0) = 0$$

Laplace
$$(i(0) = 0)$$
 $(v(0) = 0)$

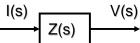
$$\frac{V(s)}{I(s)} = R$$

$$\frac{V(s)}{I(s)} = R$$
 $\frac{V(s)}{I(s)} = sL$ $\frac{V(s)}{I(s)} = \frac{1}{sC}$

$$\frac{V(s)}{I(s)} = \frac{1}{sC}$$

Impedance

- Generalized resistance to a sinusoidal alternating current (AC) I(s)
- Z(s): V(s)=Z(s)I(s)



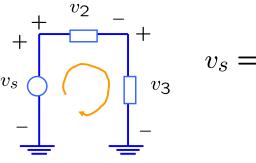
Element	Time domain	Impedance Z(s)
Resistance	v(t) = Ri(t)	$\frac{V(s)}{I(s)} = R$
Inductance	$v(t) = L \frac{di(t)}{dt}$	$\frac{V(s)}{I(s)} = sL$
Capacitance	$i(t) = C\frac{dv(t)}{dt}$	$\frac{V(s)}{I(s)} = \boxed{\frac{1}{sC}}$

Memorize!

Kirchhoff's Voltage Law (KVL)

 The algebraic sum of voltage drops around any loop is =0.

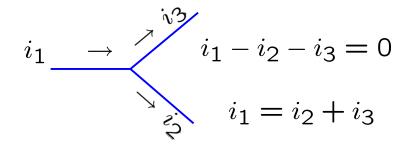
$$v_s - v_2 - v_3 = 0$$



14

Kirchhoff's Current Law (KCL)

 The algebraic sum of currents into any junction is zero.



Impedance computation

Series connection

$$Z(s) = Z_1(s) + Z_2(s)$$

Proof (Ohm's law)

$$V_i(s) = Z_i I(s)$$

$$V(s) = V_1(s) + V_2(s) = \underbrace{(Z_1(s) + Z_2(s))}_{Z(s)} I(s)$$

Impedance computation

Parallel connection

$$Z(s) = \frac{Z_1(s)Z_2(s)}{Z_1(s) + Z_2(s)} \qquad \text{I(s)} \qquad Z_1(s)$$

V(s)

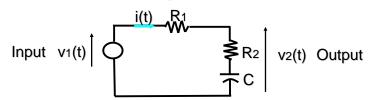
Proof (Ohm's law)

$$V(s) = Z_i I_i(s)$$

• KCL
$$I(s) = I_1(s) + I_2(s) = \frac{V(s)}{Z_1(s)} + \frac{V(s)}{Z_2(s)}$$

$$I(s) = \left(\frac{1}{Z_1(s)} + \frac{1}{Z_2(s)}\right)V(s) = \frac{1}{Z(s)}V(s)$$

Modeling example



Kirchhoff voltage law (with zero initial conditions)

$$v_1(t) = (R_1 + R_2)i(t) + \frac{1}{C} \int_0^t i(\tau)d\tau$$

$$v_2(t) = R_2i(t) + \frac{1}{C} \int_0^t i(\tau)d\tau$$

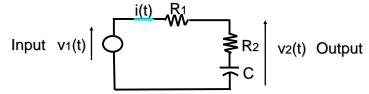
By Laplace transform,

$$V_1(s) = (R_1 + R_2)I(s) + \frac{1}{sC}I(s)$$

 $V_2(s) = R_2I(s) + \frac{1}{sC}I(s)$

18

Modeling example (cont'd)

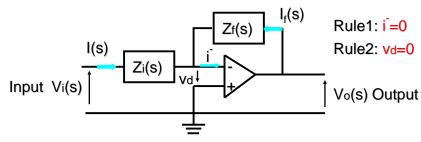


Transfer function

$$G(s) = \frac{V_2(s)}{V_1(s)} = \frac{R_2 + \frac{1}{sC}}{(R_1 + R_2) + \frac{1}{sC}}$$

$$= \frac{R_2 C s + 1}{(R_1 + R_2) C s + 1}$$
(first-order system)

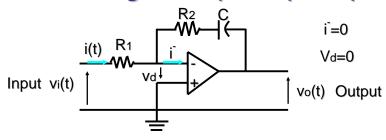
Example: Modeling of op amp



- Impedance Z(s): V(s)=Z(s)I(s)
- Transfer function of the above op amp:

$$G(s) = \frac{V_o(s)}{V_i(s)} = \frac{Z_f(s)(I_f(s) = -I(s))}{Z_i(s)I(s)} = -\frac{Z_f(s)}{Z_i(s)}$$

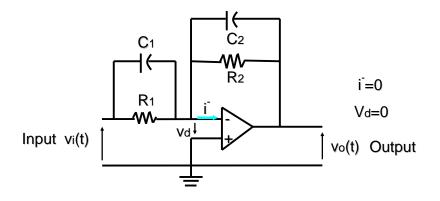
Modeling example: op amp



By the formula in previous two pages,

$$G(s) = \frac{V_o(s)}{V_i(s)} = \frac{-(R_2+\frac{1}{sC})}{R_1} = -\frac{R_2Cs+1}{R_1Cs}$$
 (first-order system)

Modeling exercise: op amp

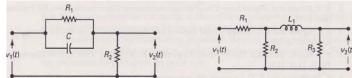


Find the transfer function!

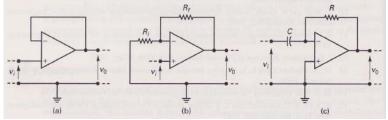
22

More exercises in the textbook

Find a transfer function from v₁ to v₂.



Find a transfer function from vi to vo.



Summary & Exercises

- Modeling
 - Modeling is an important task!
 - Mathematical model
 - Transfer function
 - Modeling of electrical systems
- Next, modeling of mechanical systems
- Exercises
 - Do the problems in page 23 of this lecture note.

23

21