ME451: Control Systems

Lecture 3

Solution to ODEs via Laplace transform

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

An advantage of Laplace transform

- We can transform an ordinary differential equation (ODE) into an algebraic equation (AE).

Example 1

ODE with initial conditions (ICs)

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=5 u_{s}(t), y(0)=-1, y^{\prime}(0)=2
$$

1. Laplace transform

$$
\begin{aligned}
& \underbrace{s^{2} Y(s)-s y(0)-y^{\prime}(0)}_{\mathcal{L}\left\{y^{\prime \prime}(t)\right\}}+3 \underbrace{3\{s Y(s)-y(0)\}}_{\mathcal{L}\left\{y^{\prime}(t)\right\}}+2 Y(s)=\frac{5}{s} \\
& \Rightarrow Y(s)=\frac{-s^{2}-s+5}{s(s+1)(s+2)}
\end{aligned}
$$

Example 1 (cont'd)

2. Partial fraction expansion

$$
Y(s)=\frac{-s^{2}-s+5}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}
$$

Multiply both sides by $\mathrm{s} \&$ let s go to zero:

$$
\left.s Y(s)\right|_{s \rightarrow 0}=A+\left.s \frac{B}{s+1}\right|_{s \rightarrow 0}+\left.s \frac{C}{s+2}\right|_{s \rightarrow 0} \Rightarrow A=\left.s Y(s)\right|_{s \rightarrow 0}=\frac{5}{2}
$$

Similarly,

$$
\begin{aligned}
& B=\left.(s+1) Y(s)\right|_{s \rightarrow-1}=\cdots=-5 \\
& C=\left.(s+2) Y(s)\right|_{s \rightarrow-2}=\cdots=\frac{3}{2}
\end{aligned}
$$

Properties of Laplace transform
Differentiation (review)

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Example 1 (cont'd)

3. Inverse Laplace transform

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{Y(s)=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}\right\} \\
\Rightarrow & y(t)=(\underbrace{\frac{5}{2}}_{A}+\underbrace{(-5)}_{B} e^{-t}+\underbrace{\frac{3}{2}}_{C} e^{-2 t}) u_{s}(t)
\end{aligned}
$$

If we are interested in only the final value of $y(t)$, apply Final Value Theorem:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} \frac{-s^{2}-s+5}{(s+1)(s+2)}=\frac{5}{2}
$$

Example 2

$$
\ddot{y}(t)-y(t)=t, \quad y(0)=1, \dot{y}(0)=1
$$

- S1 $s^{2} Y(s)-s y(0)-\dot{y}(0)-Y(s)=\frac{1}{s^{2}}$,
- S2 $Y(s)=\frac{1}{s-1}+\frac{1}{s^{2}\left(s^{2}-1\right)}$

$$
\begin{aligned}
& =\frac{1}{s-1}+\frac{s^{2}-\left(s^{2}-1\right)}{s^{2}\left(s^{2}-1\right)}=\frac{1}{s-1}+\frac{1}{s^{2}-1}-\frac{1}{s^{2}} \\
& =\frac{1}{s-1}+\frac{1}{2} \frac{1}{s-1}-\frac{1}{2} \frac{1}{s+1}-\frac{1}{s^{2}}
\end{aligned}
$$

- S3 $y(t)=\mathcal{L}^{-1}(Y(s))=\left[\frac{3}{2} e^{t}-\frac{1}{2} e^{-t}-t\right] u_{s}(t)$

In this way, we can find a rather complicated solution to ODEs easily by using Laplace transform table!

Example: Newton's law

$$
M \frac{d^{2} x(t)}{d t^{2}}=f(t)
$$

$\rightarrow x(t)$
We want to know the trajectory of $\mathrm{x}(\mathrm{t})$. By Laplace transform,

$$
\begin{aligned}
& M\left(s^{2} X(s)-s x(0)-x^{\prime}(0)\right)=F(s) \\
& \Rightarrow X(s)=\underbrace{\frac{1}{M s^{2}} F(s)}+\underbrace{\frac{x(0)}{s}+\frac{x^{\prime}(0)}{s^{2}}}
\end{aligned}
$$

(Total response) $\boldsymbol{=}($ Forced response $)+($ Initial condition response $)$

$$
\Rightarrow x(t)=\overbrace{\mathcal{L}^{-1}\left[\frac{1}{M s^{2}} F(s)\right]}+\overbrace{x(0) u_{s}(t)+x^{\prime}(0) t u_{s}(t)}
$$

EX. Air bag and accelerometer

- Tiny MEMS accelerometer
- Microelectromechanical systems (MEMS)

Ex: Mechanical accelerometer

Guide rail

Ex: Mechanical accelerometer (cont’d)

- Suppose that $\mathrm{b} / \mathrm{M}=3, \mathrm{k} / \mathrm{M}=2$ and $\mathrm{Ms}=1$.
- Partial fraction expansion

$$
Y(s)=-\frac{1}{s^{2}+3 s+2} \cdot \frac{1}{s}=-\frac{1}{2 s}+\frac{1}{s+1}-\frac{1}{2(s+2)}
$$

- Inverse Laplace transform
$y(t)=\left(-\frac{1}{2}+e^{-t}-\frac{1}{2} e^{-2 t}\right) u_{s}(t)$

Ex: Mechanical accelerometer (cont'd)

- We would like to know how $y(t)$ moves when unit step $f(t)$ is applied with zero ICs.
- By Newton's law

$$
\begin{aligned}
& \left\{\begin{array}{l}
M \frac{d^{2}}{d t^{2}}(x(t)+y(t))=-b \frac{d y(t)}{d t}-k y(t) \\
M_{s} \frac{d^{2} x(t)}{d t^{2}}=f(t)
\end{array}\right. \\
& \Longrightarrow M y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=-\frac{M}{M_{s}} f(t) \\
& \mathcal{L} Y(s)=-\frac{M}{M_{s}} \cdot \frac{1}{M s^{2}+b s+k} \cdot \frac{1}{s}=-\frac{1}{M_{s}} \cdot \frac{1}{s^{2}+(b / M) s+(k / M)} \cdot \frac{1}{s}
\end{aligned}
$$

Summary \& Exercises

- Solution procedure to ODEs

1. Laplace transform
2. Partial fraction expansion
3. Inverse Laplace transform

- Next, modeling of physical systems using Laplace transform
- Exercises
- Derive the solution to the accelerometer problem.
- E2.4 of the textbook in page 135.

