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Laplace transform (review)

= One of most important math tools in the course!
= Definition: For a function f(t) (f(t)=0 for t<0),
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= We denote Laplace transform of f(t) by F(s).

An advantage of Laplace transform

= We can transform an ordinary differential
equation (ODE) into an algebraic equation (AE).
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Solution to ODE




Properties of Laplace transform

Example 1 . _ .
P Differentiation (review)
ODE with initial conditions (ICs)
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Multiply both sides by s & let s go to zero:
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Similarly,

If we are interested in only the final value of y(t), apply
Final Value Theorem:
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Example 2
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In this way, we can find a rather
complicated solution to ODEs easily by
using Laplace transform table!

10

Example: Newton’s law

. £0)
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We want to know the trajectory of x(t). By Laplace transform,
M ( s2X(s) — sz(0) — m’(O)) = F(s)
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(Total response) = (Forced response) + (Initial condition response)
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Ex: Mechanical accelerometer
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Ex: Mechanical accelerometer (cont'd)

= We would like to know how y(t) moves when unit
step f(t) is applied with zero ICs.

= By Newton’s law
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Ex: Mechanical accelerometer (cont'd)

= Suppose that b/M=3, k/M=2 and Ms=1.
= Partial fraction expansion

= Inverse Laplace transform °

01

<}
N

y(t) =

Amplitude
S
(]

<)
=

S
(3l

2 4 6 8 10
Time[sec] 14

o

Summary & Exercises

= Solution procedure to ODEs
1. Laplace transform
2. Partial fraction expansion
3. Inverse Laplace transform

= Next, modeling of physical systems using
Laplace transform

= Exercises
= Derive the solution to the accelerometer problem.
= E2.4in the textbook.
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