ME451: Control Systems

Lecture 14 Time response of 1st-order systems

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

2

Performance measures (review)

■ Transient response ←

Peak value

Peak time

Percent overshoot

Delay time

Rise time

Settling time

Steady state response

Steady state error

- (Today's lecture)

Next, we will connect these measures with s-domain.

(Done)

3

First-order system

A standard form of the first-order system:

$$G(s) = \frac{K}{Ts + 1}$$

DC motor example (cont'd)

If La<<Ra, we can obtain a 1st-order system

$$\frac{\Omega_m(s)}{E_a(s)} = \frac{K_i}{(L_a s + R_a)(J_m s + B_m) + K_b K_i} \approx \frac{K_i}{R_a(J_m s + B_m) + K_b K_i}$$

$$=: \frac{K}{T s + 1} \left(K := \frac{K_i}{R_a B_m + K_b K_i}, T := \frac{R_a J_m}{R_a B_m + K_b K_i} \right)$$

- TF from motor input voltage to
 - motor speed is 1st-oder
 - motor position is 2nd-order

Step response for 1st-order system

• Input a unit step function to a first-order system. Then, what is the output?

$$Y(s) = G(s)U(s)$$

$$= \frac{K/T}{s+1/T} \cdot \frac{1}{s}$$

$$= \frac{K}{s} + \frac{-K}{s+1/T}$$

$$\mathcal{L}^{-1} \quad y(t) = \mathcal{L}^{-1}\{Y(s)\}$$

$$= \frac{K(1 - e^{-t/T})}{(t > 0)}$$

(Partial fraction expansion)

6

How to eliminate steady-state error

 Make a feedback system with a controller having an integrator (copy of Laplace transform of a unit step function):

One has to select controller parameters to stabilize the feedback system. Suppose K=T=1, and obtain such parameters!

Meaning of K and T

K: Gain

• Final (steady-state) value

$$\lim_{t \to \infty} y(t) = K$$

- T: Time constant
 - Time when response rises 63% of final value
 - Indication of speed of response (convergence)
 - Response is faster as T becomes smaller.

7

5

DC gain for a general system

- DC gain : Final value of a unit step response
 - For first-order systems, DC gain is K.
 - For a general stable system G, DC gain is G(0).

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{1}{s} = G(0)$$
Final value theorem

Examples

$$G(s) = \frac{3}{2s+5} \qquad G(0) = \frac{3}{5}$$

$$G(s) = \frac{7}{s^2 + 2s + 3} \qquad G(0) = \frac{7}{3}$$

Settling time of 1st-order systems

$$y(t) = K(1 - e^{-t/T})$$

Relation between time and exponential decay

t	$e^{-t/T}$		
0	1		
T	0.3679		
	0.1353		
3T	0.0498	-	5% settling time is about 3T!
4 T	0.0183	_	
5T	0.0067		2% settling time is about 4T!

10

Step response for some K & T

System identification

Suppose that we have a "black-box" system

Obtain step response

Can you obtain a transfer function? How?

9

Ramp response for 1st-order system

• Input a unit ramp function to a 1st-order system. Then, what is the output?

$$Y(s) = G(s)U(s)$$

$$= \frac{K/T}{s+1/T} \cdot \frac{1}{s^2}$$

$$= \frac{K}{s^2} + \frac{-KT}{s} + \frac{KT}{s+1/T}$$
(Partial fraction expansion)
$$\mathcal{L}^{-1} \quad y(t) = \mathcal{L}^{-1} \{Y(s)\}$$

$$= K(t-T+KTe^{-t/T})$$

$$(t>0)$$

13

Ramp response for 1st-order system

- Steady state response $y_{ss}(t) = K(t-T)$
- We may want to modify the system s.t. $y_{ss}(t) = u(t)$

14

How to eliminate steady-state error

 Make a feedback system with a controller having a double integrator (copy of Laplace transform of ramp function):

One has to select controller parameters to stabilize the feedback system. Suppose K=T=1, and obtain such parameters!

Summary and exercises

- Time response for 1st-order systems
 - Step and ramp responses
 - Time constant and DC gain
 - System identification
- Next, time response for 2nd-order systems
- Exercises
 - Review examples in this lecture.