Steady-state error: unity feedback

Suppose that we want output $y(t)$ to track $r(t)$.

- **Error** $e(t) = r(t) - y(t)$
- **Steady-state error**
 \[
 e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s - \frac{1}{1 + G(s)}R(s)
 \]

We assume that the CL system is stable!

Unity feedback!

Next, we will connect these measures with s-domain.

Performance measures (review)

- **Transient response**
 - Peak value
 - Peak time
 - Percent overshoot
 - Delay time
 - Rise time
 - Settling time
- **Steady state response**
 - Steady state error

(From next lecture)

(Today’s lecture)
Error constants

- Step-error (position-error) constant
 \[K_p := \lim_{s \to 0} G(s) \]

- Ramp-error (velocity-error) constant
 \[K_v := \lim_{s \to 0} sG(s) \]

- Parabolic-error (acceleration-error) constant
 \[K_a := \lim_{s \to 0} s^2 G(s) \]

- \(K_p, K_v, K_a \): ability to reduce steady-state error

Steady-state error for step \(r(t) \)

\[r(t) = R u_s(t) \Rightarrow e_{ss} = \frac{R}{1 + K_p} \]

Steady-state error for ramp \(r(t) \)

\[r(t) = R t u_s(t) \Rightarrow e_{ss} = \frac{R}{K_v} \]

Steady-state error for parabolic \(r(t) \)

\[r(t) = \frac{R t^2}{2} u_s(t) \Rightarrow e_{ss} = \frac{R}{K_a} \]
System type

- **System type of** G **is defined as the order** (number) **of poles of** $G(s)$ **at** $s=0$.
- **Examples**

 \[
 G(s) = \frac{K(1 + 0.5s)}{s(1 + s)(1 + 2s)(1 + s + s^2)} \quad \Rightarrow \quad \text{type 1}
 \]

 \[
 G(s) = \frac{K(1 + s)}{s^2}e^{-Ts} \quad \Rightarrow \quad \text{type 2}
 \]

 \[
 G(s) = \frac{K(1 + 2s)}{s^3} \quad \Rightarrow \quad \text{type 3}
 \]

Zero steady-state error

- If error constant is infinite, we can achieve zero steady-state error. (Accurate tracking)
 - For step $r(t)$
 \[
 K_p = \lim_{s \to 0} G(s) = \infty \Leftrightarrow G(s) \text{ is of at least type 1}
 \]
 - For ramp $r(t)$
 \[
 K_v = \lim_{s \to 0} sG(s) = \infty \Leftrightarrow G(s) \text{ is of at least type 2}
 \]
 - For parabolic $r(t)$
 \[
 K_a = \lim_{s \to 0} s^2G(s) = \infty \Leftrightarrow G(s) \text{ is of at least type 3}
 \]

Example 1

- $G(s)$ of type 2
 \[
 G(s) = \frac{K}{s^2(s + 12)}
 \]
 - Characteristic equation
 \[
 1 + G(s) = 0 \Leftrightarrow s^2(s + 12) + K = 0 \Leftrightarrow s^3 + 12s^2 + K = 0
 \]
 - CL system is NOT stable for any K.
 - $e(t)$ goes to infinity. (Don’t use today’s results if CL system is not stable!!!)

Example 2

- $G(s)$ of type 1
 \[
 G(s) = \frac{K(s + 3.15)}{s(s + 1.5)(s + 0.5)}
 \]
 - By Routh-Hurwitz criterion, CL is stable iff
 \[
 0 < K < 1.304
 \]
 - Step $r(t)$
 \[
 e_{ss} = \frac{R}{1 + K_p} = 0
 \]
 - Ramp $r(t)$
 \[
 e_{ss} = \frac{R}{K_v} \quad K_v := \lim_{s \to 0} sG(s) = \frac{3.15K}{0.75} = 4.2K
 \]
 - Parabolic $r(t)$
 \[
 e_{ss} = \frac{R}{K_a} = \infty \quad K_a := \lim_{s \to 0} s^2G(s) = 0
 \]
Example 3

- G(s) of type 2
 \[G(s) = \frac{5(s + 1)}{s^2(s + 12)(s + 5)} \]
- By Routh-Hurwitz criterion, we can show that CL system is stable.
- Step \(r(t) \)
 \[e_{ss} = \frac{R}{1 + K_p} = 0 \]
- Ramp \(r(t) \)
 \[e_{ss} = \frac{R}{K_v} = 0 \]
- Parabolic \(r(t) \)
 \[e_{ss} = \frac{R}{K_a} = 12R \quad K_a := \lim_{s \to 0} s^2 G(s) = \frac{1}{12} \]

A control example

- Closed-loop stable?
- Compute error constants
 \[K_p = \quad K_v = \quad K_a = \]
- Compute steady state errors
 \[e_{ss} = \quad e_{ss} = \quad e_{ss} = \]

Summary and Exercises

- Steady-state error
 - For unity feedback (STABLE!) systems, the system type of the forward-path system determines if the steady-state error is zero.
 - The key tool is the final value theorem!
- Next, time response of 1st-order systems
- Exercises
 - Go over the examples in this lecture.