ME451: Control Systems

Lecture 11

Routh-Hurwitz criterion: Control examples

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

Stability summary (review)

Let si be poles of

 rational G . Then, G is ...- (BIBO, asymptotically) stable if $\operatorname{Re}\left(\mathrm{si}^{\mathrm{i}} \ll 0\right.$ for all i.
- marginally stable if
- $\operatorname{Re}\left(\mathrm{si}_{\mathrm{i}}<=0\right.$ for all i , and
- simple root for $\operatorname{Re}\left(\mathrm{si}_{\mathrm{i}}\right)=0$
- unstable if
it is neither stable nor marginally stable.

Routh-Hurwitz criterion (review)

Example 1

- Design K(s) that stabilizes the closed-loop system for the following cases.
- K(s) $=K$ (constant)
- K(s) $=\mathrm{KP}+\mathrm{KI} / \mathrm{s}$ (PI (Proportional-Integral) controller)

Example 1: $K(s)=K p+K ı / s$

- Characteristic equation
$1+\left(K_{P}+\frac{K_{I}}{s}\right) \frac{2}{s^{3}+4 s^{2}+5 s+2}=0$
$\Rightarrow s^{4}+4 s^{3}+5 s^{2}+\left(2+2 K_{P}\right) s+2 K_{I}=0$
- Routh array

s^{4}	1	5	$2 K_{I}$
s^{3}	4	$2+2 K_{P}$	
s^{2}	$\frac{18-2 K_{P}}{4}$	$2 K_{I}$	
s^{1}	$*$		$K_{P}<9$
s^{0}	$2 K_{I}$		

Example 1: $\mathrm{K}(\mathrm{s})=\mathrm{K}$

- Characteristic equation
$1+K \frac{2}{s^{3}+4 s^{2}+5 s+2}=0$
$\Rightarrow s^{3}+4 s^{2}+5 s+2+2 K=0$
- Routh array $\quad s^{3} \mid 1$

5

s^{2}	4	$2+2 K$
s^{1}	$\frac{18-2 K}{4}$	
s^{0}	$2+2 K$	

$-1<K<9$

Example 1: Range of (Kp,Kı)

- From Routh array, $\quad K_{P}<9$

$$
\begin{aligned}
& K_{I}>0 \\
& \left(1+K_{P}\right)\left(9-K_{P}\right)-8 K_{I}>0
\end{aligned}
$$

Example 1: $\mathrm{K}(\mathrm{s})=\mathrm{K} p+\mathrm{K} / / \mathrm{s}$ (cont'd)

- Select Kp=3 (<9)
- Routh array (cont'd)
$\left.\begin{array}{l|ccl}s^{4} & 1 & 5 & 2 K_{I} \\ s^{3} & 4 & 8 & \\ s^{2} & 3 & 2 K_{I} \\ s^{1} & \begin{array}{c}24-8 K_{I} \\ s^{0}\end{array} & 2 K_{I}\end{array}\right\} \longrightarrow 0<K_{I}<3$
- If we select different Kp, the range of Kı changes.

Example 2

- Determine the range of K and a that stabilize the closed-loop system.

Example 1: What happens if $\mathrm{Kp}=\mathrm{Kı}=3$

- Auxiliary equation $3 s^{2}+6=0 \Leftrightarrow s= \pm \sqrt{2} j$

- Oscillation frequency $\sqrt{2}(\mathrm{rad} / \mathrm{sec})$
- Period $\frac{2 \pi}{\sqrt{2}} \approx 4.4(\mathrm{sec})$

Example 2 (cont'd)

Example 2 (cont'd)

- Characteristic equation

$$
\begin{aligned}
& 1+K \frac{\frac{1}{s(s+2)(s+3)}}{1+\frac{1}{(s+2)(s+3)}}=0 \\
& \quad 1+\frac{K}{s} \cdot \frac{1}{(s+2)(s+3)+1}=0 \\
& \Rightarrow s(s+2)(s+3)+s+K=0 \\
& \Rightarrow s^{3}+5 s^{2}+7 s+K=0
\end{aligned}
$$

Example 2 (cont'd)

- Routh array $s^{3}+5 s^{2}+7 s+K=0$

$$
\begin{array}{l|lll}
s^{3} & 1 & 7 & \\
s^{2} & 5 & K & \\
s^{1} & \frac{35-K}{5} & \longrightarrow & 0<K<35 \\
s^{0} & K & &
\end{array}
$$

- If $K=35$, oscillation frequency is obtained by the auxiliary equation

$$
5 s^{2}+35=0 \Leftrightarrow s= \pm \sqrt{7} j
$$

Summary and Exercises

- Control examples for Routh-Hurwitz criterion
- P controller gain range for stability
- PI controller gain range for stability
- Oscillation frequency
- Characteristic equation
- Next
- Time domain specifications
- Exercises

More example 1

$$
Q(s)=s^{3}+s^{2}+s+1\left(=(s+1)\left(s^{2}+1\right)\right)
$$

Routh array

s^{3}	1	1	Derivative of auxiliary poly.
s^{2}	1	1	$\left(s^{2}+1\right)^{\prime}=2 s$
s^{1}	Q^{2}		
s^{0}	1	(Auxiliary poly. is a factor of $\mathrm{Q}(\mathrm{s})$.)	

No sign changes in the first column

No root in OPEN(!) RHP

More example 2

$$
Q(s)=s^{5}+s^{4}+2 s^{3}+2 s^{2}+s+1\left(=(s+1)\left(s^{2}+1\right)^{2}\right)
$$

More example 3

$$
Q(s)=s^{4}-1\left(=(s+1)(s-1)\left(s^{2}+1\right)\right)
$$

Routh array

One sign changes in the first column

One root in OPEN(!) RHP

