ME451: Control Systems

Lecture 10 Routh-Hurwitz stability criterion

Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University

Course roadmap

Stability summary (review)

Routh-Hurwitz criterion

- This is for LTI systems with a *polynomial* denominator (without sin, cos, exponential etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots.

1

Polynomial and an assumption

Consider a polynomial

 $Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$

- Assume $a_0 \neq 0$
 - If this assumption does not hold, Q can be factored as

$$Q(s) = s^{m} \underbrace{(\hat{a}_{n-m}s^{n-m} + \dots + \hat{a}_{1}s + \hat{a}_{0})}_{\hat{Q}(s)}$$

where $\hat{a}_{0} \neq 0$

where $a_0 \neq 0$

• The following method applies to the polynomial $\widehat{Q}(s)$

5

Routh array

$s^n \ s^{n-1}$	a_n	a_{n-2}	a_{n-4}	a_{n-6}	•••	From the given
s^{n-1}	a_{n-1}	a_{n-2} a_{n-3}	a_{n-5}	a_{n-7}	•••	polynomiai
s^{n-2}	b_1	<i>b</i> 2	b_3	b_4	•••	
s^{n-3}	c_1	c_2	cз	<i>c</i> 4	•••	
:	:	÷				
s^2	k_1	k_2				
s^1	l_1					
s^0	m_1					
						6

Q(s)	All roots in open LHP?
3 <i>s</i> + 5	Yes / No
$-2s^2 - 5s - 100$	Yes / No
$523s^2 - 57s + 189$	Yes / No
$(s^2 + s - 1)(s^2 + s + 1)$	Yes / No
$s^3 + 5s^2 + 10s - 3$	Yes / No

Simple & important criteria for stability

- 1st order polynomial Q(s) = a₁s + a₀
 All roots are in LHP ⇔ a₁ and a₀ have the same sign
- 2nd order polynomial $Q(s) = a_2s^2 + a_1s + a_0$ All roots are in LHP $\Leftrightarrow a_2, a_1$ and a_0 have the same sign
- Higher order polynomial $Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$ All roots are in LHP \implies All a_k have the same sign

14

Summary and Exercises

- Routh-Hurwitz stability criterion
 - Routh array
 - Routh-Hurwitz criterion is applicable to only polynomials (so, it is not possible to deal with exponential, sin, cos etc.).
- Next,
 - Routh-Hurwitz criterion in control examples
- Exercises
 - Read Routh-Hurwitz criterion in the textbook.
 - Do Examples.

15