ME451: Control Systems

Lecture 10

Routh-Hurwitz stability criterion

Dr. Jongeun Choi
Department of Mechanical Engineering
Michigan State University

Course roadmap

Stability summary (review)

Let si be poles of rational G . Then, G is ...

- (BIBO, asymptotically) stable if $\operatorname{Re}\left(\mathrm{si}^{\mathrm{i}} \ll 0\right.$ for all i.
- marginally stable if
- $\operatorname{Re}\left(s_{i}\right)<=0$ for all i, and
- simple root for $\operatorname{Re}\left(\mathrm{si}_{\mathrm{i}}\right)=0$
- unstable if
it is neither stable nor marginally stable.

Routh-Hurwitz criterion

- This is for LTI systems with a polynomial denominator (without sin, cos, exponential etc.)
- It determines if all the roots of a polynomial - lie in the open LHP (left half-plane),
- or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots.

Polynomial and an assumption

- Consider a polynomial

$$
Q(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}
$$

- Assume $a_{0} \neq 0$
- If this assumption does not hold, Q can be factored as

$$
Q(s)=s^{m} \underbrace{\left(\hat{a}_{n-m} s^{n-m}+\cdots+\hat{a}_{1} s+\widehat{a}_{0}\right)}_{\widehat{Q}(s)}
$$

where $\hat{a}_{0} \neq 0$

- The following method applies to the polynomial $\widehat{Q}(s)$

Routh array

(How to compute the third row)

Routh array

Routh array

 (How to compute the fourth row)
Routh-Hurwitz criterion

Example 1

$$
Q(s)=s^{3}+s^{2}+2 s+8\left(=(s+2)\left(s^{2}-s+4\right)\right)
$$

Routh array

Two sign changes
Two roots in RHP in the first column
$1 \rightarrow-6 \rightarrow 8$

$$
\frac{1}{2} \pm \frac{j \sqrt{15}}{2}
$$

Example 2

$$
Q(s)=s^{5}+2 s^{4}+2 s^{3}+4 s^{2}+11 s+10
$$

Routh array

s^{5}		2	11	If 0 appears in the first column of a	
	1			nonzero row in Routh a	rray, replace it
s^{4}	2	4	10	with a small positive n	umber. In this
s^{3}	\% ε	6		case, Q has some r	ots in RHP.
s^{2}	$\frac{4 \varepsilon-12}{\varepsilon}$	10		Two sign changes in the first column	Two roots in RHP
s^{1}	6			$4 \varepsilon-12$	
s^{0}	10			$\underbrace{\varepsilon}_{<0} \rightarrow 6$	

Example 3

$$
Q(s)=s^{4}+s^{3}+3 s^{2}+2 s+2
$$

Routh array

s^{4}	1	3	2
s^{3}	1	2	
s^{2}	1	2	
s^{1}	$\not Q^{2}$		
s^{0}	2		

Take derivative of an auxiliary polynomial (which is a factor of $\mathrm{Q}(\mathrm{s})) \quad s^{2}+2$

If zero row appears in Routh array, Q has roots either on the imaginary axis or in RHP.

No sign changes in the first column \square No roots in RHP

But some roots are on imag. axis.

Example 4

$$
Q(s)=s^{3}+3 K s^{2}+(K+2) s+4
$$

Find the range of K s.t. $Q(s)$ has all roots in the left half plane. (Here, K is a design parameter.)

13

Simple \& important criteria for stability

- $1^{\text {st }}$ order polynomial $Q(s)=a_{1} s+a_{0}$

All roots are in LHP $\Leftrightarrow a_{1}$ and a_{0} have the same sign

- $2^{\text {nd }}$ order polynomial $Q(s)=a_{2} s^{2}+a_{1} s+a_{0}$

All roots are in LHP $\Leftrightarrow a_{2}, a_{1}$ and a_{0} have the same sign

- Higher order polynomial $Q(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$

All roots are in LHP \Rightarrow All a_{k} have the same sign

Examples

$Q(s)$	All roots in open LHP?
$3 s+5$	Yes / No
$-2 s^{2}-5 s-100$	Yes / No
$523 s^{2}-57 s+189$	Yes / No
$\left(s^{2}+s-1\right)\left(s^{2}+s+1\right)$	Yes / No
$s^{3}+5 s^{2}+10 s-3$	Yes / No

