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Frequency Response Example: 
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At zero frequency, this system has a DC (steady-state) gain of 
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In a decibel (dB) scale, this gain is expressed. 
( ) dB 02630100202log20)0( 10 .).(GH ===  

The two are equivalent but one is on a linear scale and the other on a logarithmic scale 
 
Note:  For the record, “deci-Bel” dB is the 10*log( power ratio) 
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The Root Locus showing the closed-loop pole locations is 

 
 
The Open-Loop Frequency Response (Bode Diagram) is plotted with the command 
 
EDU» num=[12]; den=conv([1 1],conv([1 2], [1 3])); G=tf(num,den) 
EDU» bode(G) 
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And the Gain and Phase margins are computed with the command 
EDU» margin(G) 
 
Yielding the plot... 

  
 
This plot show a Gain Margin (GM) = 13.979 dB and a Phase Margin of 75.636 degrees. 
 
The Gain Margin indicates that the control gain can be increased by 13.979 dB 
(10(14/20) = 5) from K = 1 = 0dB before the system will go unstable.   
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The Phase Margin indicates that at the current gain (K = 1), the system can absorb an 
addition phase lag of 75.636 before it will go unstable. 
 
For the system 
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the GM=14. dB and Phase Margin = 76 degrees with K=1indicate a very stable system.   
 
The step response for the Closed-Loop system 
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confirms this prediction.  

 
 
Although the step response is stable, the steady state error is 33%.  Could we reduce it by 
increasing the gain K from dB) 0( 1=K to dB) 02.6( 2=K ?  Yes, just add 6.02 dB to the 
frequency response shift it up 6.02 dB at all frequencies.  Let’s plot it with the Matlab 
commands 
 

EDU» num=[24]; den=[1 6 11 6]; G=tf(num,den);margin(G) 
 
The new open-loop transfer function 

6116
24)( 232 +++

=
sss

sG  

has a DC gain of dB) 12(    4)(2 ==sG reducing the error to %202.0)41(1)( ==+=!e  
but sacrifices stability with the new GM=8 dB and PM = 35 degrees. 
 
The system’s closed-loop transfer function 
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has the predicted, less stable response with better steady-state error. 
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More Advanced Control Design: 
 
Our system still has inadequate steady-state accuracy – even at the high gain (K=2) where 
the limiting gain and phase margins are achieved.  To increase steady-state accuracy, 
apply an integral control. 
 

Integral Controller: 
The transfer function of an integral controller is: 

sKsGc =)(  
The frequency response of this controller is plotted using the Matlab command 
 
and is shown below for K=1. 
 

 
Adding the magnitude and phase of the Integral controller to the magnitude and phase of 
the original controller can be done either graphically or analytically.  The result is the 
Bode diagram of the open-loop transfer function  
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of the system shown in the figure below. 
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Closed Loop system with Integral Controller 
 
 
The Bode diagram is … 
 

, K=1 

 
The resulting system has a Gain Margin, GM = -1.6 dB and the Phase Margin,  
PM = -7 degrees so it is unstable.  To stabilize the system at an acceptable GM = 8 dB 
and PM = 45degrees requires a reduction in integral control gain by a factor of at least 
8+1.6 = 9.6 dB to meet the gain margin requirement.  The new control gain 
 

33.010dB 6.9 )20/6.9( ==!= !K  
 

The resulting bode diagram has a GM=8 dB and a PM=36 degrees and is shown below.  
This reduced gain now meets the gain margin (GM) requirement but does not achieve the 
required phase margin, PM = 45 degrees. 
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To achieve the require phase margin, decrease the gain K further.  How much?  Look at 
the Bode Diagram for K = 0.33and make an estimate.  The 0 dB crossing point needs to 
move from about !  = 0.55 to about !  = 0.42.  This requires a further magnitude 
adjustment of about 3 dB = 0.7.  Try K=0.33*0.7 = 0.23. Matlab Computes this system’s 
GM = 11.2 dB and PM = 48. degrees.  The 0 dB crossing shows a bandwidth of about 0.4 
rad/sec yielding a time constant of approximately =! 2.5 seconds. 
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The system integral controller design is sGc 23.0=  and has the closed-loop step 
response given by the closed-loop transfer function 
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This system has a steady-state gain 1)0( =T  and no steady-state error at any gain because 
the open-loop system is type 1.  The closed-loop system step response is given below. 

 
The system’s overall time constant is slower than predicted, sT approximately 20 seconds 
yielding an equivalent time constant =!  about 5 seconds.   
 

Proportional-Derivative Control: 
A Proportional-Derivative (PD) control generates a “lead” action.  This control will both 
increase the speed of response and further stabilize the system.   
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Propose a controller with a “zero” at ==!dp KK 0.4 rad/sec.  This additional control 
makes the controller transfer function 
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yielding the Open-Loop system transfer function for the P-D plus Integral controller 
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The Bode diagram (open-loop frequency response) of this system with the modified 
controller for K=1 shows a decrease in phase lag about the zero “corner” frequency. 

 
This new “P-D+I” controlled system has a gain margin GM = 11.9 dB and a phase 
margin PM = 55 degrees while retaining zero steady-state error.  Furthermore, the 
bandwidth of the system =! about 1.3 rad/sec (look at the 0 dB crossing) yielding an 
expected time constant =! about 0.76 seconds and a settling time =sT about 3 seconds.  
It should be substantially faster than with only “I” action.  The step response for the 
closed-loop system 
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verifies this expectation. 
 



  4-23-2010 

 10 of 11 

 
The result is a closed-loop system with settling time =sT 10 seconds, corresponding to a 
time constant =! 2.5 sec.  The system has about 10% overshoot because we designed it 
with plenty of gain and phase margin.  This compares very favorably to the “Integral 
only” control that had a settling time of about 20 seconds.  The “PD” action has 
decreased the time of response of our system substantially.  Looks like a good controller.   
 
You should see that although we have used the analytical model to explain what is 
happening and allow easy Matlab plotting of results, WE DID NOT NEED THE PLANT 
MODEL to do the design.  In fact, the use of a Bode diagram allows the simple addition 
of the controller frequency response to a measured plant frequency response.  
Understanding with a transfer function model is important BUT you can simply add the 
controller transfer function to a measured plant transfer function if you do not have a 
transfer function model available.  
 

A Final Note: 
 
The addition of the “Proportional-Derivative” term to the Integral controller meant that 
we did not need to add a “pole” to the PD controller to implement it.  If we wanted to add 
a “PD” term to the original system, we would have had to use something like 
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where LP!  is some frequency above the frequency of the “zero” ==!dp KK 0.4 

rad/sec.  I might try something like LP!  = 4 rad/sec. 
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which has the Bode diagram, 
 
 

 
 

This diagram shows explicitly the phase lead generated by the pole-zero pair on the real 
axis with the pole to the left (high frequency =! 4.0 rad/sec) of the zero (low 
frequency =! 0.4 rad/sec).    This figure also shows the 20 dB = 10 (linear) magnitude 
reduction that results at zero frequency normally causing reduced system steady-state 
accuracy through the resulting larger steady-state error. 
 
 


