Instructor

- **Class Instructor**: Dr. Jongeun Choi,
 - Website: http://www.egr.msu.edu/~jchoi/
 - Assistant Professor at ME department,
 - 2459 Engineering Building,
 - Email: jchoi@egr.msu.edu

- **Office Hours**
 - 2459 EB, MWF 10:10-11:00am, Extra hours by appointment

- **Laboratory Instructor**: Dr. C. J. Radcliffe,
 - 2445 Engineering Building
 - Email: radcliff@egr.msu.edu

Course information

- **Lecture**:
 - When: MWF: 12:40pm-1:30pm,
 - Where: 2245 Engineering Building
- **Class website**: http://www.egr.msu.edu/classes/me451/jchoi/2010/
- **Laboratory website**: http://www.egr.msu.edu/classes/me451/radcliff/lab
- **Required Text**:

Main components of the course

- **Lectures** (about 40 lectures)
- **Old Math Quiz**
- **Midterm1, Midterm2**
- **Final (Final exam period)**
- **Laboratory work**
- **Grading**:
 - Homework (10%), Math Quiz (5%), Exam 1 (17.5%), Exam 2 (17.5%), Final Exam (comprehensive) (25%), Laboratory work (25%)
 - Homework will be due in one week from the day it is assigned
Tips to pass this course

- Come to the lectures as many times as you can.
- Print out and bring lecture slides to the lecture.
- Do “Exercises” given at the end of each lecture.
- Do homework every week.
- Read the textbook and the slides.
- Make use of instructor’s office hours.
- If you want to get a very good grade…
 - Read the textbook thoroughly.
 - Read optional references too.
 - Do more than given “Exercises”.
 - Use and be familiar with Matlab.

What is “Control”?

- Make some object (called system, or plant) behave as we desire.
- Imagine “control” around you!
 - Room temperature control
 - Car/bicycle driving
 - Voice volume control
 - “Control” (move) the position of the pointer
 - Cruise control or speed control
 - Process control
 - etc.

What is “Control Systems”?

- Why do we need control systems?
 - Convenient (room temperature control, laundry machine)
 - Dangerous (hot/cold places, space, bomb removal)
 - Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter)
 - They exist in nature. (human body temperature control)
 - Lower cost, high efficiency (factory automation), etc.
 - Many examples of control systems around us

Open-Loop Control

- Open-loop Control System
 - Toaster, microwave oven, shooting a basketball

\[Y_d \xrightarrow{\text{Controller (Actuator)}} \text{Plant} \xrightarrow{\text{input}} \text{output} \]

- Calibration is the key!
- Can be sensitive to disturbances
Example: Toaster
- A toaster toasts bread, by setting timer.

<table>
<thead>
<tr>
<th>Setting of timer</th>
<th>Toaster</th>
<th>Toasted bread</th>
</tr>
</thead>
</table>

- **Objective**: make bread *golden browned* and crisp.
- A toaster does *not measure* the color of bread during the toasting process.
- For a fixed setting, in winter, the toast can be white and in summer, the toast can be black (Calibration!)
- A toaster would be more expensive with sensors to measure the color and actuators to adjust the timer based on the measured color.

Example: Laundry machine
- A laundry machine washes clothes, by setting a program.

<table>
<thead>
<tr>
<th>Program setting</th>
<th>Machine</th>
<th>Washed clothes</th>
</tr>
</thead>
</table>

- A laundry machine does *not measure* how clean the clothes become.
- Control without measuring devices (sensors) are called **open-loop control**.

Closed-Loop (Feedback) Control
- Compare actual behavior with desired behavior
- Make corrections based on the error
- The sensor and the actuator are key elements of a feedback loop
- Design control algorithm

Ex: Automobile direction control
- Attempts to change the direction of the automobile.

<table>
<thead>
<tr>
<th>Desired direction</th>
<th>Error</th>
<th>Steering wheel angle</th>
<th>Auto</th>
<th>Direction</th>
</tr>
</thead>
</table>

- Manual closed-loop (**feedback**) control.
- Although the controlled system is “Automobile”, the **input** and the **output** of the system can be different, depending on **control objectives**!
Ex: Automobile cruise control
- Attempts to maintain the speed of the automobile.
- Cruise control can be both manual and automatic.
- Note the similarity of the diagram above to the diagram in the previous slide!

Basic elements in feedback control systems

Control system design objective
To design a controller s.t. the output follows the reference in a “satisfactory” manner even in the face of disturbances.

Systematic controller design process
1. Modeling
2. Analysis
3. Design
4. Implementation

Goals of this course
To learn basics of feedback control systems
- Modeling as a transfer function and a block diagram
 - Laplace transform (Mathematics!)
 - Mechanical, electrical, electromechanical systems
- Analysis
 - Step response, frequency response
 - Stability: Routh-Hurwitz criterion, (Nyquist criterion)
- Design
 - Root locus technique, frequency response technique, PID control, lead/lag compensator
- Theory, (simulation with Matlab), practice in laboratories
Course roadmap

Modeling
- Laplace transform
- Transfer function
- Models for systems
 - mechanical
 - electrical
 - electromechanical
- Linearization

Analysis
- Time response
 - Transient
 - Steady state
- Frequency response
 - Bode plot
- Stability
 - Routh-Hurwitz
 - (Nyquist)

Design
- Design specs
- Root locus
- Frequency domain
- PID & Lead-lag
- Design examples

(Matlab simulations & laboratories)

Summary & Exercises

- **Introduction**
 - Examples of control systems
 - Open loop and closed loop (feedback) control
 - Automatic control is a lot of fun!

- **Next**
 - Laplace transform

- **Exercises**
 - Buy the course textbook at the Bookstore.
 - Read Chapter 1 and Apendix A, B of the textbook.